首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以‘拉宾斯’、‘艳阳’、‘马哈利CDR-1’为材料,对其自花授粉坐果率进行统计分析。用石蜡切片技术对拉宾斯雌雄配子体发育过程进行解剖观察。结果表明:(1)‘拉宾斯’自花授粉坐果率明显低于‘艳阳’和‘马哈利CDR-1’。(2) 拉宾斯从小孢子母细胞形成至成熟花粉的各发育阶段均观察到小孢子退化、花粉囊中的花粉干瘪、出现空腔。花粉成熟阶段部分花药绒毡层细胞不发生退化,花粉难以散出,造成雄性败育。(3)雌配子体在大孢子母细胞发育阶段出现大孢子发育不良或不能形成等异常发育雌配子体败育类型。(4)雄配子体在3月1日左右开始发育,3月14日左右趋近成熟;雌配子体则发育相对较晚,3月12日左右开始发育,3月25日左右趋近成熟。研究表明,‘拉宾斯’雌、雄配子体在其形成发育过程中的各种异常使其不能正常受精并且雌雄配子体发育不同步,最终导致坐果量低下。  相似文献   

2.
刺五加大、小孢子发生和雌、雄配子体发育的观察   总被引:11,自引:0,他引:11  
刺五加Eleutherococcus senticosus(Rupr.et Maxim.)Maxim.雄株的小孢子发生和雄配子体发育过 程正常,大孢子发生和雌配子体发育过程多不正常。雄花具5个花药,花药4室,药壁发育属双子叶型, 腺质绒毡层,绒毡层细胞多具2核。小孢子母细胞经减数分裂形成四面体形四分体,其胞质分裂为同时 型。成熟花粉为3细胞型。子房下位,5室;每室有上胚珠和下胚珠,上胚珠退化,下胚珠倒生、具单珠 被、厚珠心;大孢子母细胞经减数分裂形成线形或“T”形四分体,偶尔有2个并列或串联的四分体或在 四分体之上又出现孢原细胞。其功能大孢子位置不确定。雌配子体发育中异常现象较多。开花时,雌 配子体主要为反足细胞退化后的四细胞胚囊。刺五加雌株的小孢子母细胞不能进行减数分裂或减数分 裂不正常,不能形成四分体。开花时,药室空瘪,无花粉形成。其大孢子发生和雌配子体发育过程正常, 大孢子母细胞减数分裂形成线形或“T”形四分体,合点端大孢子为功能大孢子,胚囊发育属蓼型。开花 时,雌配子体主要为七细胞八核或七细胞七核胚囊,其卵器尚未发育成熟。刺五加两性株的小孢子发生 过程无异常,但雄配子体发育过程有部分异常;开花时,药室内有或多或少的空花粉,且花粉粒大小悬 殊,大的直径达35μm,小的仅15~18 μm。两性株的雌蕊发育大部分正常,也有一些异常胚囊形成。开 花时,雌配子体主要是七细胞八核胚囊、七细胞七核胚囊和反足细胞退化后的四细胞胚囊,其卵器也未发育成熟。  相似文献   

3.
周洋  杨章旗  黄永利 《广西植物》2020,40(4):482-491
为了解湿地松‘松泰’小孢子叶球在发育过程形态是否有差异变化,明确其败育过程、败育方式及影响因素,为湿地松雄性不育品种利用和后期开展相关研究提供科学依据。该研究以‘松泰’s10败育系和s9可育系为材料,观察小孢子叶球形态发育变化,并对其小孢子叶球进行石蜡切片,在光学显微镜下观察小孢子发育过程。结果表明:s10败育系和s9可育系在小孢子母细胞减速分裂前无明显差异,小孢子叶球生长趋势也一致;四分体时期,s10小孢子细胞发育异常,小孢子叶球形态发育也出现异常,二者异常发育具有同步性;可育系从四分体到单核小孢子发育阶段的时间为5 d左右,而败育系持续发育长达20 d左右,持续时间为可育系的4倍。在此期间出现小孢子绒毡层细胞发育异常、降解缓慢,小孢子囊壁组织排列紊乱、降解延迟等现象,s10形成异常二核花粉,且无花粉散出。因此,推论s10小孢子败育的原因主要是小孢子囊壁细胞发育异常,其小孢子叶球形态异常,相对应的绒毡层在四分体时期发育异常,不能适时地分泌胼胝质酶来降解围绕着四分体的胼胝质壁,也不能适时地合成输送花粉形成所需能量物质,同时囊壁细胞出现降解延迟和层积,这一系列的异常变化导致不能形成正常四分体,从而使花粉败育。  相似文献   

4.
短柄五加大,小孢子发生和雌,雄配子体发育的研究   总被引:6,自引:2,他引:4  
王仲礼  田国伟 《植物研究》1998,18(2):177-183
短柄五加花药5枚,每个花药四个花粉囊。小孢子母细胞减数分裂时,胞质分裂为同时型,产生正四面体形的四分体。花药壁由表皮、药室内壁、中层和绒毡层四层细胞组成,其发育类型为双子叶型。腺质绒毡层,其细胞为二核。三细胞型花粉。子房5室,每室两个胚珠,上胚珠败育,下胚珠可育。下胚珠倒生,具单珠被,厚珠心。大孢子母细胞减数分裂形成线性排列的四个大孢子,雌配子体发育属蓼型。开花当天,花粉散开,雌配子体尚未成熟,处  相似文献   

5.
楸树大小孢子发生与雌雄配子体发育的研究   总被引:1,自引:0,他引:1  
运用石蜡切片法和整体透明法对楸树(Catalpa bungei C.A.Meyer)大、小孢子发生及雌、雄配子体发育过程进行了研究.结果表明:楸树可育雄蕊2枚,花药4室,药壁发育属双子叶型,腺质异型绒毡层.小孢子母细胞减数分裂为同时型,四分体后小孢子不分离形成正四面体型四合花粉,偶有左右对称型和十字交叉型.成熟花粉为二细胞型,无萌发孔.子房上位,2室,中轴胎座,胚珠多数,倒生,单珠被,薄珠心,具珠被绒毡层.单孢原直接发育为大孢子母细胞,四分体线形排列,合点端大孢子发育为功能大孢子,胚囊发育为蓼型.雄蕊发育早于雌蕊,花开后雌、雄蕊趋于同熟.研究认为:虽然楸树雌、雄蕊发育过程中均存在一定比例的败育,但其花而不实"并非雄性或雌性不育所致.推测与其授粉受精和胚后发育有关.  相似文献   

6.
利用常规石蜡切片和超薄切片技术研究蓝猪耳(Torenia fournien)小孢子发生和雄配子体发育过程.蓝猪耳雄蕊4枚,花药具4个花粉囊.小孢子母细胞经减数分裂成四分体,其排列方式为四面体形或左右对称形.成熟花粉属2细胞型,具3个萌发孔.花药壁发育为双子叶型,腺质绒毡层.小孢子母细胞在四分体时期频繁出现细胞质降解的异常现象,其它发育阶段均正常;小孢子母细胞不正常的减数分裂可能导致花粉败育,这可能是蓝猪耳结实率低的原因之一.  相似文献   

7.
熊海燕  刘志雄 《植物研究》2018,38(2):212-217
采用石蜡切片技术对深山含笑大、小孢子的发生和雌、雄配子体发育进行观察:深山含笑花药4室,花药囊壁由5-7层细胞构成,腺质绒毡层,小孢子胞质分裂为修饰性同时型,四分体有四面体型、对称型,偶有交叉型,成熟花粉为2细胞型;胚珠倒生、双珠被、厚珠心,大孢子四分体直线型排列,合点端为功能大孢子、雌配子体发育方式为蓼型。从雌、雄配子体发育时间的先后来看,深山含笑春季雌、雄配子体能正常发育,雄蕊先熟,雄蕊和花瓣凋谢后雌蕊大孢子母细胞才形成。而秋季开花的深山含笑,花药中小孢子在孢原细胞或初生造孢细胞期停止发育,花粉败育;雌蕊胚珠珠心组织也未见大孢子母细胞发育,开花后雌蕊随花柄凋落。该研究为深山含笑生殖发育和杂交育种积累了资料。  相似文献   

8.
为了解孝顺竹(Bambusa multiplex)的大孢子及雌配子体的发育过程,利用扫描电镜对孝顺竹的雌蕊形态以及大孢子和雌配子体的发育进行了观察。结果表明,孝顺竹雌蕊单子房,1室,双珠被,薄珠心;大孢子母细胞是由1个雌性孢原细胞直接发育而成,大孢子四分体为线性,位于珠孔端的1个大孢子分化成为功能大孢子,然后由功能大孢子依次经历二核、四核、最终形成1卵细胞2助细胞2极核3反足细胞的成熟胚囊。此外,孝顺竹为雌雄同熟类型,根据雌、雄蕊发育的对应关系,从雄蕊形态可估测雌配子体发育阶段。有少数雌蕊出现败育现象,可能是孝顺竹结实率低的原因之一。  相似文献   

9.
云南松雌雄配子体的发育   总被引:3,自引:0,他引:3  
云南松(Pinus yunnanensis Fr.)雄配子体于10月在小孢子叶腹面产生二个小孢子囊,内有许多进行分裂的造孢组织细胞。第二年一月下旬至二月初小孢子母细胞进行减数分裂。在分裂期间,细胞内所贮存的淀粉粒的分布发生变化。二月初四分体小孢子形成,绒毡层细胞解体。二日中旬单核花粉粒形成,外壁扩展形成二个异极对称的气囊。三月花粉在四细胞时期散发。 雌配子体于二月上旬在珠心皮下分化出孢原细胞。二月下旬大孢子母细胞进入减数分裂期。三月初直列四分体大孢子形成,珠孔端三个退化,合点端一个功能大孢子进入有丝分裂期,形成约32个游离核的配子体。次年三月初雌配子体形成,四月初中央细胞核分裂,四月底颈卵器成熟,卵核周围产生辐射状原生质纤丝。五月初受精开始。云南松雌雄配子体的发育与亚热带分布的P.roburghii相似。  相似文献   

10.
为了解孝顺竹(Bambusa multiplex)的大孢子及雌配子体的发育过程,利用扫描电镜对孝顺竹的雌蕊形态以及大孢子和雌配子体的发育进行了观察。结果表明,孝顺竹雌蕊单子房,1室,双珠被,薄珠心;大孢子母细胞是由1个雌性孢原细胞直接发育而成,大孢子四分体为线性,位于珠孔端的1个大孢子分化成为功能大孢子,然后由功能大孢子依次经历二核、四核、最终形成1卵细胞2助细胞2极核3反足细胞的成熟胚囊。此外,孝顺竹为雌雄同熟类型,根据雌、雄蕊发育的对应关系,从雄蕊形态可估测雌配子体发育阶段。有少数雌蕊出现败育现象,可能是孝顺竹结实率低的原因之一。  相似文献   

11.
Two years of histological samples were collected from a Pinus monticola Dougl. (western white pine) tree identified as not producing mature pollen or seed cones. Anatomical information was collected to the ultrastructural level, to assess possible mechanisms for pollen and cone abortion resulting in sterility. Development of male and female gametophytes in the sterile western white pine tree was arrested after meiosis and before further cell divisions could take place. Sterile male gametophytes (pollen grains) had poorly developed pollen walls and sacci, reduced and degenerative cytoplasm, and no evidence of stored starch grains. The pollen cone aborted prior to pollen dehiscence. Meiosis of the megaspore mother cell in the ovule produced four megaspores, but development was stopped at the functional megaspore stage. The seed cone aborted in the first year of growth before winter dormancy. Tapetal tissue in sterile microsporangia appeared similar to that of fertile microsporangia, until the vacuolate, uninucleate microspore stage. Tapetal cells and thecal fluid surrounding the sterile microspores persisted well past the time when microsporangia on fertile trees started the process of maturation and desiccation. At pollen dehiscence, sterile pollen cones did not release any pollen and the microsporangia were filled with a sticky fluid. The behaviour of the tapetum in P. monticola sterile cones is compared with reports of tapetal function and malfunction reported in studies of angiosperm and other gymnosperm species. The occurrence and timing of gametophyte abortion in both cone sexes suggests a genetic rather than environmental basis for the sterility mechanism.  相似文献   

12.
This paper describes megasporogenesis, microsporogenesis, and development of female and male gametophytes in Eleutherococcus senticosus. The main results are as follows: Flowers of E. senticosus are epigynous, pentamerous. Anthers are 4 -microsporangiate. An ovary has 5 loculi. Each ovary loculus has 2 ovules: the upper ovule and the lower ovule. The upper one is orthotropous and degenerates after the formation of archesporial cell, while the lower one is anatropous, unitegmic and crassinucellar, and able to continue developing. In male plants, microsporogenesis and development of male gametophytes took place in regular way, but a series of abnormal phenomena were found in megasporogenesis and development of female gametophytes. The microspore mother cells gave rise to tetrahedral tetrads by meiosis. Cytokinesis was of the simultaneous type. The mature pollen was 3-celled and shed singly. The anther wall formation belonged to the dicotyledonous type. At the stage of microspore mother cell, the anther wall consisted of four layers, i.e. epidermis, endothecium, middle layer, and tapetum. The tapetum was of glandular type and its most cells were binucleate. When microspores were at the uninucleate stage, the tapetum began to degenerate in situ. When microspores developed into 3-celled pollen grains, the tapetum had fully degenerates. In the lower ovule of male flower, the megaspore mother cell gave rise to a linear or “T” -shaped tetrad. In some cases, a new archesporial cell over the tetrad or two tetrads parallel or in a series were observed. Furthermore, the position of functional megaspore was variable; any one or two megaspores might be functional, or one megaspore gave rise to a uninucleate embryo sac, but two other megaspores also had a potentiality of developing into the embryo sac. In generally, on the day when flowers opened, female gametophytes contained only 4 cells: a central cell, two irregular synergids and one unusual egg cell. In female plants, microspore mother cells and secondary sporogenous cells were observed. But at the stage of secondary sporogenous cell, the newly differentiated tapetum took the appearance of degeneration. Later, during the whole stage of meiosis, the trace of degenerative tapetum could be seen. At last, the microsporangium degenerated and no tetrad formed. On the blossom day, all anthers shriveled without pollen grains. In female flowers, megasporogenesis and development of female gametophytes were normal: the tetrad of megaspores was linear or “T”-shaped; the chalazal megaspore was usually functional; the development of embryo sac was of the Polygonum type. On the blossom day, most embryo sacs consisted of 7 cells with 8 nuclei or 7 cells with 7 nuclei; but the egg apparatus was not fully developed. In hermaphroditic plants, microsporogenesis was normal but the development of male gametophytes was partially abnormal. When the hermaphroditic flowers blossomed, there were more or less empty pollen grains in the microsporangium and these pollen grains were quite different in size. The development of most gynoecia was normal but numerous abnormal embryo sacs could be seen. On the blossom day, female gametophytes were mainly 7-celled with 8-nuclei or with 7-nuclei or 4-celled with antipodal cells degenerated; the egg apparatus wasnot fully developed either.  相似文献   

13.
梨不同品种花粉生活力测定及授粉特性研究   总被引:2,自引:0,他引:2  
以19个梨品种为试材,用离体培养法测定在不同贮藏温度下花粉生活力,并调查6个杂交组合和15个梨品种自交的结实特性。结果表明,在培养基中加入硼酸和赤霉素可提高花粉生活力;通过镜检发现大慈梨、八月红、黄金梨3个品种花粉败育;在不同的贮藏条件下,温度越低花粉发芽率下降越缓慢,因此在低温条件下适合花粉长久贮藏;在贮藏过程中,均存在"短期被迫休眠现象",且随温度的降低被迫休眠恢复时间向后延伸。6个杂交组合的花朵坐果率和花序坐果率平均值为82.54%和94.82%,与自然授粉没有明显差异,因此金二十世纪可以作为鸭梨、雪花梨的授粉树,雪花梨、鸭梨、红安久、红茄梨可以作为黄金梨的授粉树;15个梨品种自交结实率较低,而大慈梨、八月红、黄金梨、秦丰、秀玉、新星、雪花梨、丰水8个品种不结实,在生产上均需配置授粉树才能达到产量需求。  相似文献   

14.
To determine a possible mechanism causing male and female sterility in Cryptomeria japonica male and female cones were collected from a C. japonica, tree, ShinDai2, that lacks pollen release and fertile seeds and specimens were processed to examine the development of pollen and female gametophytes using light microscopy and field emission scanning electron microscopy. Pre-meiotic development proceeded normally, but the formation of aberrant meiotic products was observed in cones of both sexes. In sterile microsporangia, heterogeneous microspore populations ranging from monads to polyads gave rise to mature pollen grains of non-uniform size. These pollen grains were covered with an amorphous layer and adhered to each other. In addition, they remained in the microsporangia and were not released even after the onset of pollen dissemination from fertile trees. In the ovules of sterile female cones, megaspores with abnormal shapes, numbers, and sizes formed, and the development of female gametophytes was arrested at the free nuclear or archegonium formation stages. These gametophytes collapsed, and no fertile embryo was generated. Results indicate that meiotic defects are important in the sterility mechanism.  相似文献   

15.
The development of the gametophytes and fertilization of Pseudotaxus chienii Cheng has been investigated. Pollination first occurred on April 17 (1964). The pollen grains shed at the uninucleate stage and germination on the nucellus is almost immediate. The pollen tubes approached the freenucleate female gametophyte about May 5. The spermatogenous cell is continuously enlarging with the growth of the pollen tube and two unequal sperms are formed after its division. Occasionally the small sperm may divide further into two smaller ones. During pollination the megaspore mother cell is in meiosis and 3 or 4 megaspores are formed. Generally 2 or 3 megaspores at the micropylar end are going to degenerate while the chalaza] megaspore is rapidly enlarging. After 8 successive simultaneous divisions of the functional megaspore 256 free nuclei are resulted and they are evenly distributed at the bulge of the famale gametophyte. Then the wall formation follows. Sometimes there are more than two, even as many as 5–6 gametophytes developed within a single ovule. The archegonial initials become differentiated at the apical end of the female gametophyte. They are usually single and apical, rarely lateral in position. The number of the archegonia vary from 3 to 7, usually 4–6. There are 2–8 neck cells in each archegonium which is surrounded by a layer of jacket cells. The central cell divided about May 20–26 (1964) and the division of the central cell gives rise to the egg and the ventral canal nucleus, the latter being degenerated soon. There are many proteid vacuoles near the nucleus of the matured egg. The fertilization took place about May 23–26 (1964). At first, the pollen tube discharges its contents into the egg, then the larger sperm fuses with the egg nucleus in the middle part of the archegonium. At the same time the male cytoplasm also fuses with the female cytoplasm and a layer of densely-staining neocytoplasm is formed around the fused nucleus. The smaller sperm, tube nucleus and sterile cell usually remain in the cytoplasm above the egg nucleus for some time. Based upon the observations of the development of the gametophytes and fertilization the authors conclude that Pseudotaxus is more close related to Taxus than any other member of Taxaceae.  相似文献   

16.
Embryo sac abortion is one of the major masons for sterility in indicaljaponica hybrids In rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indicaljaponica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagamatogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucallus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.  相似文献   

17.
Embryo sac abortion is one of the major reasons for sterility in indica/japonica hybrids in rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indica/japonica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagametogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucellus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.  相似文献   

18.
白洁  周涛  马江  刘文  姜治国  陈发菊 《植物研究》2022,42(6):946-955
三叶木通(Akebia trifoliata)属于木通科(Lardizabalaceae)木通属(Akebia),为雌雄异花,雌雄同株的木质藤本植物,具有药食两用的经济价值。本文运用石蜡切片技术观察了三叶木通的大小孢子发生和雌雄配子体发育过程中胚胎学特征,以期了解三叶木通有性生殖过程,分析该物种自然条件下结实率低的生殖原因,为其后续进行杂交育种和新品种培育提供理论基础。结果表明:三叶木通雄蕊6枚,每枚花药具4个小孢子囊,花药壁完全分化时由外到内依次为1层表皮、1层药室内壁、2~3层中层及1层绒毡层,且绒毡层为分泌型绒毡层。小孢子母细胞减数分裂的胞质分裂为同时型,小孢子四分体为四面体型排列,从四分体分离出来的小孢子经过进一步发育形成2-核成熟花粉细胞。小孢子囊中的小孢子四分体时期存在少量败育现象。雌蕊具1室子房,为侧膜胎座,胚珠横生,多枚,双珠被,厚珠心。大孢子母细胞减数分裂后形成的大孢子四分体呈线型排列,靠珠孔端的3个大孢子退化,合点端的1个大孢子发育成为功能大孢子,经3次连续有丝分裂并进一步发育为七细胞八核的蓼型胚囊。雌花中的雄蕊早期发育正常,但小孢子发育至单核靠边期不在进一步发育,花药壁不开裂。雄花中的心皮早期发生退化,心皮愈合不完全,无胚珠产生。三叶木通大、小孢子发生和雌、雄配子体发育基本正常,不是导致其结实率低的原因,结实率低可能与影响传粉的外部因素有关。  相似文献   

19.
Pollination, fertilization and ovule abortion were studied in Oxalis magnifica (Rose) Knuth, a strongly self-incompatible herb that regularly matures only a fraction of its ovules. Examination of cleared ovules indicated that among 9 individuals the average number of ovules fertilized ranged from 48–92%. The remaining ovules either failed to produce female gametophytes, or more commonly contained unfertilized female gametophytes, despite large numbers of compatible pollen grains that were placed on stigmas. Abortion of fertlized ovules could be detected first by the flattened and enlarged appearance of the endosperm nuclei, followed by visible deterioration of the embryo. Among individuals the rate of embryo abortion varied from 3.4–47.9%. At lower levels of pollination an almost one-to-one relationship existed between the number of pollen grains placed on stigmas and the number of seeds matured in the capsule. No threshold number of pollen grains necessary for successful pollen tube growth and fertilization could be demonstrated. Reduction in seed number through embryo abortion provides an opportunity for selection among developing seeds. The potential for this form of selection varies widely among individuals of Oxalis magnifica, which showed a 14-fold variation in the average percentage of aborted ovules.  相似文献   

20.
选用石蜡切片法观察了彩色马蹄莲品种‘Majestic Red’的大小孢子发生及雌雄配子体发育的过程。研究结果表明:彩色马蹄莲的胚珠为倒生,具双珠被、厚珠心和珠被绒毡层。大孢子母细胞的减数分裂后形成的四分体为直线型或T型排列,合点端的大孢子发育成为功能大孢子,其余3个大孢子则退化,表明胚囊发育方式为单孢子发生的蓼型胚囊。观察到每个雄花花药多数,花粉囊呈蝶形,每侧有2个小孢子囊。花药壁由外到内分别为表皮、药室内壁、中层和绒毡层,其中绒毡层为变形绒毡层类型。在小孢子形成时,胞质分裂属于连续型,小孢子排列成十字形的四分体,成熟花粉则为二胞花粉粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号