首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Down-regulation of GhADF1 gene expression affects cotton fibre properties   总被引:1,自引:0,他引:1  
Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1 ) expression in the transgenic cotton plants. We observed that both the fibre length and strength of the GhADF1 -underexpressing plants increased as compared to the wild-type fibre, and transgenic fibres contained more abundant F-actin filaments in the cortical region of the cells. Moreover, the secondary cell wall of the transgenic fibre appeared thicker and the cellulose content was higher than that of the control fibre. Our results suggest that organization of actin cytoskeleton regulated by actin-associated proteins such as GhADF1 plays a critical role in the processes of elongation and secondary cell wall formation during fibre development. Additionally, our study provided a candidate intrinsic gene for the improvement of fibre traits via genetic engineering.  相似文献   

2.
为研究羊驼毛的特性并评价羊驼的生产性能,观察了羊驼皮肤和毛的显微结构和超微结构。结果表明:皮肤中皮脂腺很少,这决定了羊驼毛易清洗;毛囊由初级毛囊和大部分复合毛囊组成,因此大部分羊驼毛很细;羊驼毛的髓质比例小于皮质所占比例,而且白毛的髓质与皮质的比例大于有色毛,这决定了羊驼毛轻而具有好的保暖性,且白毛重量轻于有色毛;羊驼毛的皮质细胞具有双层结构,上皮细胞有5层,皮质周围有内、外上皮,这些结构可能使毛避免损伤,并可使黑色素颗粒避免丢失以维持其自然色;羊驼毛的鳞片呈锯齿状并形成裂痕,具有疏水性,因此羊驼毛可以防水。所有这些特点决定了羊驼毛在毛纺工业中是理想的原料。  相似文献   

3.
Comestible fruit production from Musaceas plants is an important economical activity in developing countries like Colombia. However, it generates a large amount of agro-industrial residues. Some of them are a potential resource of natural fibres, which can be used as reinforcement for composite materials. In this work, a series of commercial plantain (Musa AAB, cv "Dominico Harton") fibre bundles extracted from pseudostem, leaf sheath and rachis agricultural wastes were analyzed. Mechanical decortication and biological retting processes were used during fiber extraction. No significant differences in composition of vascular bundles were observed for both extraction processes. Gross morphological characteristics and mechanical behavior have been evaluated. Conducting tissues with spiral-like arrangement are observed attached to fibre bundles. This fact suggests a big amount of these tissues in commercial plantain plants. Both used extraction methods are not enough to remove them. Pseudostem fibre bundles have higher specific strength and modulus and lower strain at break than leaf sheath and rachis fibre bundles, having values comparable to other lignocellulosic fibres bundles.  相似文献   

4.
Gene expression changes and early events in cotton fibre development   总被引:7,自引:0,他引:7  
Lee JJ  Woodward AW  Chen ZJ 《Annals of botany》2007,100(7):1391-1401
  相似文献   

5.
Poly (ethylene terephthalate) fibre [PET] is the commonly used fibre for majority of end-use applications, however, the desire for improved textile properties such as wettability or hydrophilicity are increasing. Biotechnology can be defined as the application of scientific and engineering to the processing of materials by biological agents to provide goods and services. The environmental issues associated with the textile processing are not new. Currently and in the years to come, besides lower cost of operation, improved durability, wear comfort and development of new attributes for textiles, the new criteria for judging the new processes is ecology. This paves the way for biotechnology. This article throws light on the applications of enzymes for the treatment of polyester fabrics.  相似文献   

6.
7.
Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.  相似文献   

8.
Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty‐seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA‐Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu‐chr13‐2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.  相似文献   

9.
A study (100 days duration) was conducted to evaluate the efficiency of an exotic earthworm species (epigeic-Eisenia foetida) for decomposition of different types of organic substrates (kitchen waste, agro-residues, institutional and industrial wastes including textile industry sludge and fibres) into valuable vermicompost. The percentage of, nitrogen, phosphorous and potassium in vermicompost was found to increase while pH and total organic carbon declined as a function of the vermicomposting period. 4.4-5.8-fold increases in TKN was observed in different feed mixtures at the end of vermicomposting period. The increase in TKN for different feed substrates was found in the order: textile sludge>textile fibre=institutional waste>agro-residues>kitchen waste. Available Phosphorus increased 1.4 to 6.5-fold in different feed mixtures in comparison to control. Reduction in TOC was highest in agro-residues (3-fold) followed by kitchen waste (2.2-fold), institutional waste (1.7-fold) and textile industrial wastes (sludge, 1.5-fold and fibre, 1.68-fold) in earthworm-inoculated pots than control. The data reveals that vermicomposting (using E. foetida) is a suitable technology for the decomposition of different types of organic wastes (domestic as well as industrial) into value-added material.  相似文献   

10.
11.
12.
Brown fibre cotton is an environmental‐friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine‐mapped the brown fibre region, Lc1, and dissected it into 2 loci, qBF‐A07‐1 and qBF‐A07‐2. The qBF‐A07‐1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF‐A07‐1 and qBF‐A07‐2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF‐A07‐1 and qBF‐A07‐2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome‐wide association study (GWAS) and found that qBF‐A07‐2 negatively affects fibre yield and quality through an epistatic interaction with qBF‐A07‐1. This study sheds light on the genetics of fibre colour and lint‐related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.  相似文献   

13.
Cotton fibres, the single‐celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine‐α (PSK‐α) is a novel peptide hormone in plants that is involved in regulating cell proliferation and elongation. However, its potential applications in crop genetic improvement have not been evaluated. In this study, we describe how exogenous PSK‐α application promotes cotton fibre cell elongation in vitro. Chlorate, an effective inhibitor of peptide sulfation, suppressed fibre elongation in ovule culture. Exogenously applied PSK‐α partly restored the chlorate‐induced suppression. A putative PSK gene (GhPSK) was cloned from Gossypium hirsutum. Expression pattern analysis revealed that GhPSK is preferentially expressed in rapidly elongating fibre cells (5–20 days postanthesis). Overexpression of GhPSK in cotton increased the endogenous PSK‐α level and promoted cotton fibre cell elongation, resulting in longer and finer fibres. Further results from electrophysiological and physiological analyses suggest that GhPSK affects fibre development through regulation of K+ efflux. Digital gene expression (DGE) profile analysis of GhPSK overexpression lines indicates that PSK signalling may regulate the respiratory electron‐transport chain and reactive oxygen species to affect cotton fibre development. These results imply that peptide hormones are involved in cotton fibre growth and suggest a new strategy for the biotechnological improvement of cotton fibre quality.  相似文献   

14.
A combined (enzymatic and chemical) process using a Bacillus pumilus strain (DKS1), isolated from the soil, was used to degum ramie bast fibres. After 24 h of incubation with the isolated pectinolytic strain using a low-cost medium, the weight loss of the ramie fibre was found to be 25% under small scale. High activity of pectate lyase was detected in the culture supernatants; 400 kg of ramie fibres was degummed with 24% weight loss in large-scale degumming under field conditions. No cellulase activity was found. Microbial intervention followed by mild (0.1%) alkali treatment showed high percentage of weight loss from the ramie fibre. Bacterial degumming followed by chemical treatment resulted in an increase of single fibre tenacity (cN/tex) by more than 20.81% as compared to non-degummed (decorticated) fibre samples. Scanning electron micrographs (SEM) and fluorescence microscope showed that after Bacillus pumilus DKS1 treatment the surface of the decorticated ramie fibre becomes very smooth. These results indicate the process provides an economical and eco-friendly method for the small scale as well as large-scale degumming of decorticated ramie fibre. This study has great relevance to the textile as well as paper industry.  相似文献   

15.
Textile effluent is generally complicated to manage because of its extremely noxious and recalcitrant coloured compositions. Mycoremediation is an extensively used strategy for the competent degradation of hazardous pollutants present in textile effluent. Fungus could be immobilized in synthetic or natural matrices. The current study shows the decolourization of the textile effluent by 85·5 and 98·5% within 6 h using suspended and immobilized fungus, Geotrichum candidum with optimized parameters like inoculum size (5%), pH (4·5), and temperature (30°C). To maintain a high biomass of fungal population and enhance the retention of fungal strain in the contaminated sites, the fungi need to be immobilized. Hence, the fungus was immobilized naturally onto the selected inert support that is, coconut fibres by the means of adsorption, where they grew as active films on the fibres after being grown in the culture broth. The optimized process parameters of inoculum size, fibre quantity and agitation speed for immobilized G. candidum were 5%, 2·2 g l−1 of effluent and 100 rev min−1 respectively. High level of laccase (22 and 25 U l−1 in suspended and immobilized fungal cells treatment respectively) was observed during the process of decolourization and it was found that decolourization was directly proportional to the laccase activity. The UV–vis, FTIR, 1H NMR and GC-MS analyses of treated textile industrial wastewater revealed the degradation of toxic pollutants in the textile effluent and formation of lower molecular weight intermediates. The study revealed a higher efficacy of immobilized G. candidum in comparison to suspended fungal culture, employing ligninolytic enzyme laccase, which catalyzes the degradation/transformation of aromatic dyes in the textile effluent thus decolourizing it.  相似文献   

16.
Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14‐3‐3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14‐3‐3L, Gh14‐3‐3e and Gh14‐3‐3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14‐3‐3 RNAi transgenic plants were significantly shorter than those of wild type. This ‘short fibre’ phenotype of the 14‐3‐3 RNAi cotton could be partially rescued by application of 2,4‐epibrassinolide (BL). Expression levels of the BR‐related and fibre‐related genes were altered in the Gh14‐3‐3 transgenic fibres. Furthermore, we identified Gh14‐3‐3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14‐3‐3L/e/h were required for Gh14‐3‐3‐GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14‐3‐3 proteins. Additionally, 14‐3‐3‐regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14‐3‐3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation.  相似文献   

17.
The adenovirus serotype 3 (Ad3) fibre has been expressed in Escherichia coli as an insoluble protein. The protein was solubilized by extraction with urea. Slow removal of urea during the purification procedure resulted in a soluble Ad3 fibre preparation. Polyacrylamide gel analysis of the purified fibre protein, as well as cross-linking experiments performed on cellular debris of expressing cells, suggest that the recombinant Ad3 fibre self-assembles as a trimer from identical polypeptide chains. Gel filtration gave the same exclusion volume for the purified recombinant fibre and for the native fibre in the protein mixture extracted from the Ad3-infected cells. The recombinant fibre was partially resistant to proteolytic degradation, suggesting a folded structure.  相似文献   

18.
Wool, a dead tissue of epithelial origin, derives many of its properties as a textile fibre from the structure and arrangement of the proteins from which it is comprised. Much of the progress in the elucidation of wool protein structures, as a step towards understanding this relationship between structure and properties, has been made in the Division of Protein Chemistry of Australia's Commonwealth Scientific and Industrial Research Organization.  相似文献   

19.
Actinomycetes, a large group of filamentous bacteria account for 70–80% of secondary metabolites available commercially. The present investigation was undertaken with an aim to identify and characterize pigment from actinomycetes. Actinomycetes were isolated from rhizosphere soil samples collected from different regions of Madhya Pradesh state. Out of 85 actinomycetes, only 5 actinomycetes showed pigment production and based on diffusible pigment production ability one actinomycete ARITM02 was selected. The extraction of pigment was done by solvent extraction method using methanol and purified by TLC and column chromatography. The pigment was characterized by UV–Vis spectroscopy which showed the lamda maximum of 277.44. FTIR spectroscopy suggested various functional groups like amino group, amide group, hydroxide, benzene and lactone group. The Mass spectroscopy and NMR spectroscopy showed that the molecular mass of pigment is 621.7 and molecular formula is C34H43N3O8. The pigment was also tested for Antimicrobial activity against broad spectrum human pathogens, antioxidant test and toxicity test for safe use as a natural colorant in cosmetic, food, pharmaceutical and textile industries. The conclusion of study suggested that this novel pigment could be a versatile natural, safe and multipurpose.  相似文献   

20.
Research and application of biotechnology in textile industries in China   总被引:1,自引:0,他引:1  
Textile industry is a conventional and pillar industry in China, which possesses a considerable proportion of the national economy. In recent years, special attention has been paid to the application of biotechnology in textile industries in China. As an interdiscipline between natural science and engineering science, textile biotechnology has much effect on China's textile industry. This paper summarizes current developments and highlights those areas where biotechnology might play an increasingly important role in China's textile industry as follows:
(1) Development of new types of textile fibers and polymers, such as Bt cotton naturally colored cotton, colored silk and silk gene-sequence, spider silk non-wovens, chitin fiber and chitosan derivatives, etc.

(2) Application of enzyme technology in textile wet processing, such as alkaline pectinase, PVA-degrading enzyme, cutinase and catalase used for cotton preparation, neutral cellulase for denim washing, transglutaminase for wool modification, protease for silk degumming as well as pectinase and hemicellulases for retting of bast fibers.

(3) Treatment of textile effluents with biotechnology.

Keywords: Biotechnology; Textile industries; Enzymes  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号