首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Tibetan Plateau is one of the top 10 biodiversity hotspots in the world and acts as a modern harbour for many rare species because of its relatively pristine state. In this article, we report a landscape genetic study on the Yunnan snub-nosed monkey ( Rhinopithecus bieti ), a primate endemic to the Tibetan Plateau. DNA was extracted from blood, tissue and fecal samples of 135 wild individuals representing 11 out of 15 extant monkey groups. Ten microsatellite loci were used to characterize patterns of genetic diversity. The most striking feature of the population structure is the presence of five subpopulations with distinct genetic backgrounds and unique spatial regions. The population structure of R. bieti appears to be shaped by anthropogenic landscape features as gene flow between subpopulations is strongly impeded by arable land, highways and human habitation. A partial Mantel test showed that 36.23% ( r  =   0.51, P  =   0.01) of the genetic distance was explained by habitat gaps after controlling for the effect of geographical distance. Only 4.92% of the genetic distance was explained by geographical distance in the partial Mantel test, and no significant correlation was found. Estimation of population structure history indicates that environmental change during the last glacial maximum and human impacts since the Holocene, or a combination of both, have shaped the observed population structure of R. bieti . Increasing human activity on the Plateau, especially that resulting in habitat fragmentation, is becoming an important factor in shaping the genetic structure and evolutionary potential of species inhabiting this key ecosystem.  相似文献   

2.
The Tibetan gazelle (Procapra picticaudata) is a threatened species and distributed on the Qinghai-Tibet Plateau of China (Qinghai Province, Tibet Autonomous Region and the adjacent Gansu Province, Sichuan Province, and Xinjiang Uigur Autonomous Region). Small peripheral populations of Tibetan gazelle were once found in northern Sikkim and Ladakh, but now these are close to extinction. To describe the evolutionary history and to assess the genetic diversity within this monotypic species and population structure among different geographic locations in China, we sequenced mitochondrial DNA from the control region (CR) and cytochrome (cyt) b gene for 46 individuals from 12 geographic localities in Qinghai, Tibet, Xinjiang, Gansu, and Sichuan. A total of 25 CR haplotypes and 16 cyt b haplotypes were identified from these gazelle samples. CR haplotype diversity (0.98+/-0.01) and nucleotide diversity (0.08+/-0.009) were both high. Phylogenetic trees indicate that the Tibetan gazelle in China can be divided into three main clades: Tibet, Sichuan (SCH) and Qinghai-Arjin Shan-Kekexili (QH-ARJ-KKXL). Analysis of molecular variance (AMOVA) and network analysis consistently support this geographic structure in both datasets. Significant differentiation between populations argues for the presence of management units (MUs). Such differentiation may reflect a geographic separation resulting from the uplift of the Qinghai-Tibet Plateau during the Late Pliocene and Pleistocene. Mismatch distribution analysis implies that Tibetan gazelle has undergone complex population changes. We suggest that the present population structure has resulted from habitat fragmentation during the recent glacial period on the Qinghai-Tibet Plateau and population expansion from glacial refugia after the glacial period. It is likely that the present populations of Tibetan gazelle exhibit a pattern reminiscent of several bottlenecks and expansions in the recent past.  相似文献   

3.
The Guizhou snub‐nosed monkey (Rhinopithecus brelichi) is a primate species endemic to the Wuling Mountains in southern China. With a maximum of 800 wild animals, the species is endangered and one of the rarest Chinese primates. To assess the genetic diversity within R. brelichi and to analyze its genetic population structure, we collected fecal samples from the wild R. brelichi population and sequenced the hypervariable region I of the mitochondrial control region from 141 individuals. We compared our data with those from the two other Chinese snub‐nosed species (R. roxellana, R. bieti) and reconstructed their phylogenetic relationships and divergence times. With only five haplotypes and a maximum of 25 polymorphic sites, R. brelichi shows the lowest genetic diversity in terms of haplotype diversity (h), nucleotide diversity (π), and average number of pairwise nucleotide differences (Π). The most recent common ancestor of R. brelichi lived ~0.36 million years ago (Ma), thus more recently than those of R. roxellana (~0.91 Ma) and R. bieti (~1.33 Ma). Phylogenetic analysis and analysis of molecular variance revealed a clear and significant differentiation among the three Chinese snub‐nosed monkey species. Population genetic analyses (Tajima's D, Fu's Fs, and mismatch distribution) suggest a stable population size for R. brelichi. For the other two species, results point in the same direction, but population substructure possibly introduces some ambiguity. Because of the lower genetic variation, the smaller population size and the more restricted distribution, R. brelichi might be more vulnerable to environmental changes or climate oscillations than the other two Chinese snub‐nosed monkey species. Am J Phys Anthropol, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Qu YH  Ericson PG  Lei FM  Li SH 《Molecular ecology》2005,14(6):1767-1781
Most phylogeographical studies of postglacial colonization focus on high latitude locations in the Northern Hemisphere. Here, we studied the phylogeographical structure of the red-necked snow finch Pyrgilauda ruficollis, an endemic species of the Tibetan plateau. We analysed 879 base pairs (bp) of the mitochondrial cytochrome b gene and 529 bp of the control region in 41 birds from four regional groups separated by mountain ranges. We detected 34 haplotypes, 31 of which occurred in a single individual and only three of which were shared among sampling sites within regional groups or among regional groups. Haplotype diversity was high (h = 0.94); nucleotide diversity was low (eth = 0.00415) and genetic differentiation was virtually non-existent. Analyses of mismatch distributions and geographically nested clades yielded results consistent with contiguous range expansion, and the expansion times were estimated as 0.07-0.19 million years ago (Ma). Our results suggest that P. ruficollis colonized the Tibetan plateau after the extensive glacial period (0.5-0.175 Ma), expanding from the eastern margin towards the inner plateau. Thus, in contrast to many of the post-glacial phylogeographical structures known at high latitudes, this colonization occurred without matrilineal population structuring. This might be due to the short glacial cycles typical of the Tibetan plateau, adaptation of P. ruficollis to cold conditions, or refugia and colonized habitat being semicontinuous and thus promoting population mixing.  相似文献   

5.
Yuan QJ  Zhang ZY  Peng H  Ge S 《Molecular ecology》2008,17(4):1054-1065
The evolutionary history of plants in the southeast Tibetan Plateau might be the most complicated around the world because of the area's extremely complex topography and climate induced by strong tectonic activity in recent history. In this research, we implemented a phylogeographical study using chloroplast sequences (psbA-trnH and trnQ-rps16 intergenic spacer) on Dipentodon, a monotypic or ditypic genus (D. sinicus and D. longipedicellatus) distributed in southwest China and adjacent areas including Myanmar (Burma), northeast India and northern Vietnam. A total of 257 samples from 16 populations from the southeast Tibetan Plateau (D. longipedicellatus) and the Yungui Plateau (D. sinicus) were collected. The results revealed that Dipentodon had 11 haplotypes for the two intergenic spacers, high genetic diversity (h(T) = 0.902) and high genetic differentiation (N(ST) = 0.987 and G(ST) = 0.948). amova analysis showed that the component of among-population within region/species (55.25%) was unexpectedly larger than the among-species/region component (43.69%), which indicates that there is no justification for recognizing two species in Dipentodon. Correlation of pairwise genetic and geographical distances showed that Dipentodon populations in the southeast Tibetan Plateau may have suffered more habitat fragmentation than populations in the Yungui Plateau because of the uplift of the Tibetan Plateau than populations in the Yungui Plateau have. Nested clade analysis showed that 11 haplotypes formed two 3-level, three 2-level and seven 1-level clades, with eight clades showing significant geographical association. However, clade 2-1 and 2-2 did not cluster together, although they are distributed in the same region (Yungui Plateau) and belong to the same species (D. sinicus). This led not only to incongruence between haplotype network and geographical distribution of 2-level clades, but also to paraphyly of D. sinicus to D. longipedicellatus. We concluded that the incongruence and paraphyly may result from incomplete lineage sorting during the rapid and extreme tectonic events of the Tibetan Plateau. The results reported here will no doubt provide new insights into the evolution of biodiversity on the Tibetan Plateau and adjacent areas, and a historical framework for the conservation of biodiversity in this area, including Dipentodon.  相似文献   

6.
The genetic structure and phylogeographical history of the alpine shrubs Sibiraea angustata (Rosaceae) and Sibiraea laevigata from the Qinghai–Tibetan Plateau (QTP) were investigated to identify alpine plant responses to changes in the QTP and glaciations. Fifty-five populations were analyzed using four chloroplast DNA (cpDNA) regions and (nuclear ribosomal internal transcribed spacer) nrITS sequence data. In all, 21 cpDNA haplotypes and 13 nrITS sequence types were detected. Analyses of the genetic diversity and phylogenetic relationships detected two rarely reported glacial refugia. One was the Yushu–Nangqian area, and the other consisted of the area from the Songpan Plateau to the southeastern margin of the QTP. Sibiraea species populations experienced divergent evolution and founder effects when they recolonized the QTP platform and adjacent high-altitude regions following glaciations. The divergence times of the main lineages and haplotypes were in the range of 1.60–2.58 Ma. The population size of Sibiraea species in the QTP decreased approximately 23-fold during the last 0.12 Ma, indicating that Sibiraea species were significantly affected by environmental changes in the QTP. Therefore, the rapid uplift of the QTP and subsequent glaciations likely played an important role in driving genetic divergence and population size changes of Sibiraea species in the QTP.  相似文献   

7.
Fan Z  Liu S  Liu Y  Liao L  Zhang X  Yue B 《PloS one》2012,7(5):e38184
The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure.  相似文献   

8.
The schizothoracine Gymnocypris chilianensis is restricted to the Shiyang, Ruoshui and Shule Rivers, listed from east to west, along the northeast edge of the Tibetan Plateau. This distribution provides a valuable system to test hypotheses about postglacial colonization. We used mitochondrial DNA sequence data (a control region and the cytochrome b gene; 1894 bp) to assess the phylogeographic structure of this species based on 278 specimens sampled from throughout the species' entire geographical range. We found three lineages corresponding geographically to the three rivers, suggesting three independent glacial differentiation centers within the northeast edge of the Tibetan Plateau. The phylogenetic analysis suggested that the Shiyang River population forms a lineage that separated from the other populations of G. chilianensis at the basal phylogenetic split within this species. The molecular data further demonstrated a clear pattern of decreasing genetic diversity from the eastern Shiyang River towards the central Ruoshui River and western Shule River lineages, a pattern consistent with sequential western colonization. We therefore propose a phylogeographic scenario for G. chilianensis of a gradual westerly expansion from the Shiyang River population along the northeast edge of the Tibetan Plateau, with subsequent allopatric evolution at approximately 0.37 and 0.05 million years ago (Ma), through at least two glacial maxima. Together with the genetic evidence reported in other species, our findings suggest that this common biogeographic pattern emphasizes the importance of the northeastern edge region of the Tibetan Plateau as a hotspot of genetic diversity for some taxa.  相似文献   

9.
Habitat islands, genetic diversity, and gene flow in a Patagonian rodent   总被引:4,自引:0,他引:4  
The effects of terrestrial habitat islands on gene flow and genetic diversity in animal populations have been predicted and discussed in theoretical terms, but empirical data are needed to test these predictions and provide an understanding of the relationships of life-history characteristics to genetics of insular species. We studied saxicolous mice ( Phyllotis xanthopygus ) in Patagonia to explore genetic structure, phylogeography, and gene flow in a species inhabiting natural habitat islands. Phylogeographic analyses based on mtDNA sequences revealed two haplotype clades, which presumably reflect early Pleistocene factors that temporarily separated the mice into two geographically isolated groups. The Río Chubut, which lies within a glacial drainage basin bisecting northern Patagonia, might have affected gene flow in the species. Although we anticipated isolation by distance and founder phenomena associated with habitat islands, in some habitat patches we found evidence of high local genetic diversity. The amount of divergence in the mitochondrial cytochrome b gene (≈ 3.4%) in animals at a single locality could best be explained through a combination of historical factors and metapopulation source–sink theory. Demographic shifts, dispersal, and episodic recolonization are important in the life history and genetic population structure of P. xanthopygus .  相似文献   

10.
Pseudopodoces humilis, a long misclassified terrestrial tit, is the only species of parid whose distribution is limited to treeless terrain and endemic to the Tibetan Plateau. We revealed the phylogeographic structure of the species by using mitochondrial control region, as well as comparing morphological characters. The distinct geographic distributions of two major clades suggest spatial and temporal separations that coincide with important climatic and paleogeographic changes following the uplift of the Tibetan Plateau. Population expansion was inferred for the population at the platform of the Plateau 0.17 million years before present (Ma B.P.), and restricted gene flow with isolation by distance was detected within this region, congruent with expansion occurring after the extensive glacial period. A significant decrease in body size with decreasing altitude was found, possibly indicating selection for larger-sized birds at higher altitude.  相似文献   

11.
珠江源头入侵种波氏吻虾虎的遗传多样性分析   总被引:1,自引:0,他引:1  
为了解入侵种波氏吻虾虎Rhinogobius cliffordpopei在珠江源头地区的遗传多样性分布特征及其影响成因,本研究以线粒体细胞色素b(cyt b)基因为分子标记,对珠江源头的9个水库自然种群进行了遗传多样性与遗传分化分析。获得该物种cyt b基因全序列1 141 bp,其中保守位点1 072个,变异位点69个,无插入和缺失位点。96只个体具有5个单倍型,群体单倍型多样性为0.359±0.059,核苷酸多样性为0.021±0.010,表现为低单倍型多样性与高核苷酸多样性的群体遗传特征。以外群子陵吻虾虎R.giurinus、褐吻虾虎R.brunneus和短吻红斑吻虾虎R.rubromaculatus构建的分子系统发育树和网络分支图显示,波氏吻虾虎群体的所有单倍型与外群物种分开,构成一个单系群,并分化为2个明显的系统分支。分子变异分析结果表明,种群间和种群内的遗传变异率分别为62.99%、37.01%,固定指数为0.630(P<0.01),证实波氏吻虾虎群体形成了显著的遗传分化结构。波氏吻虾虎在珠江源头入侵地具有较高的遗传多样性水平与显著的遗传结构,入侵种群可能受到了奠基者事件和遗传瓶颈效应的影响,而多次人为引入和水利大坝的隔离作用可能为该物种扩散分布和积累突变提供了条件。研究结果将为防治波氏吻虾虎的入侵危害及保护土著鱼类物种多样性提供科学指导。  相似文献   

12.
The giant spiny frog(Quasipaa spinosa) is an endangered species with a relatively small distribution limited to southern China and Northern Vietnam. This species is becoming increasingly threatened because of over-exploitation and habitat degradation. This study provides data on the genetic diversity and population genetic structure of the giant spiny frog to facilitate the further development of effective conservation recommendations for this economically important but threatened species. We examined 10 species-specific microsatellite loci and Cyt b genes(562 bp) collected from 13 wild populations across the entire range of this species. Results of 10 microsatellite loci analysis showed a generally high level of genetic diversity. Moreover, the genetic differentiation among all 12 populations was moderate to large(overall F_(ST) = 0.1057). A total of 51 haplotypes were identified for Cyt b, which suggests high haplotype nucleotide diversities. Phylogeographic and population structure analyses using both DNA markers suggested that the wild giant spiny frog can be divided into four distinct major clades, i.e., Northern Vietnam, Western China, Central China, and Eastern China. The clades with significant genetic divergence are reproductively isolated, as evidenced by a high number of private alleles and strong incidence of failed amplification in microsatellite loci. Our research, coupled with other studies, suggests that Q. spinosa might be a species complex within which no detectable morphological variation has been revealed. The four phylogenetic clades and some subclades with distinct geographical distribution should be regarded as independent management units for conservation purposes.  相似文献   

13.
Aim The genetic impact of Quaternary climatic fluctuations on mountain endemic species has rarely been investigated. The Pyrenean rock lizard (Iberolacerta bonnali) is restricted to alpine habitats in the Pyrenees where it exhibits a highly fragmented distribution between massifs and between habitats within massifs. Using mitochondrial DNA markers, we set out: (1) to test whether several evolutionary units exist within the species; (2) to understand how the species persisted through the Last Glacial Maximum and whether the current range fragmentation originates from distribution shifts after the Last Glacial Maximum or from more ancient events; and (3) to investigate whether current mitochondrial diversity reflects past population history or current habitat fragmentation. Location The Pyrenees in south‐western France and northern Spain. Methods We used variation in the hypervariable left domain of the mitochondrial control region of 146 lizards collected in 15 localities, supplemented by cytochrome b sequences downloaded from GenBank to cover most of the species’ distribution range. Measures of population genetic diversity were contrasted with population isolation inferred from topography. Classical (F‐statistics) and coalescence‐based methods were used to assess the level of gene flow and estimate divergence time between populations. We used coalescence‐based simulations to test the congruence of our genetic data with a scenario of simultaneous divergence of current populations. Results Coalescence‐based analyses suggested that these peripheral populations diverged simultaneously at the end of the last glacial episode when their habitats became isolated on mountain summits. High mitochondrial diversity was found in peripheral, isolated populations, while the populations from the core of the species’ range were genetically impoverished. Where mitochondrial diversity has been retained, populations within the same massif exhibited high levels of genetic differentiation. Main conclusions As suggested for many other mountain species, the Pyrenean rock lizard survived glacial maxima through short‐distance range shifts instead of migration or contraction in distant southern refugia. Most of the main Pyrenean range has apparently been re‐colonized from a single or a few source populations, resulting in a loss of genetic diversity in re‐colonized areas. As a result, current levels of intra‐population mitochondrial diversity are better explained by post‐glacial population history than by current habitat fragmentation. Genetic population differentiation within massifs implies severe reduction in female‐mediated gene flow between patches of habitats.  相似文献   

14.
Li M  Liu Z  Gou J  Ren B  Pan R  Su Y  Funk SM  Wei F 《American journal of primatology》2007,69(11):1195-1209
The golden monkey (Rhinopithecus roxellana) is one of the most endangered primate species due to its dramatically shrinking distribution during the past 400 years. Its populations are restricted to three isolated regions, Qinglin (QL), Sichuan/Gansu (SG), and Shennongjia (SNJ) in China. As with other snub-nosed monkeys in China and Vietnam, the biology and evolution of this species is still poorly known. To assess genetic differentiation and explore the relationships among populations of golden monkeys from different geographic locations, 379 bp of mitochondrial DNA control region (CR) hypervariable segment I (HVI) was studied from 60 individuals. Twelve haplotypes were identified from seven populations within the three regions. Haplotype diversity was high (0.845), whereas nucleotide diversity among all haplotypes was low (0.0331). The most recent common ancestor (TMRCA) among mtDNA haplotypes was estimated to have lived approximately 0.48-0.32 million years ago. None of the haplotypes is shared among any of the three regions. Phylogenetic analysis and AMOVA revealed clear and significant phylogeographic structure between the three regions. However, only SG contained haplotypes of the two main clades, indicating either incomplete random sorting of haplotypes or a complex history with phases of population subdivisions and merging of populations. The phylogeographic structure implies that R. roxellana should be regarded as separate management units (MUs) for each of the three regions. It is likely that recent phylogeographic history has shaped the pattern of genetic differentiation observed in the golden monkey and that its populations have suffered significant demographic fluctuation.  相似文献   

15.
The effects of the physical environment on populations of organisms endemic to the Tibetan Plateau and its surrounding areas have attracted increased scientific interest in recent years. Triplophysa leptosoma (Cobitidae: Cypriniformes) is an endemic species restricted to the Tibet Plateau and adjacent areas. Its distribution includes river systems around the Qilian mountains areas which located in the northeast edge of Tibet Plateau, including the Shiyang River, Heihe River and Shule River in the Hexi Corridor, Qaidam Basin river system and Yellow River system. In this study, we use mitochondrial DNA sequences (cytochrome b gene 1000 bp and cytochrome oxidase I gene 635 bp) to investigate the effects of geomorphological changes associated with the uplift of the Qilian Mountains on the major patterns of intraspecific diversification and population structure of the T. leptosoma. Based on our data, phylogenetic relationships among the 48 haplotypes revealed five major clades with strong geographic orientation. Our results suggest that the origin of these clades may correspond to the intermittent uprise of the Qilian Mountains. The Quaternary climatic changes and glacial-interglacial cycles had an important effect on the differentiation of haplotypes and the genetic diversity of the T. leptosoma. Meanwhile, population expansion also occurred during the repeated glacial event and the basin interconnections in the past.  相似文献   

16.
以线粒体Cyt b基因为分子标记, 对雅鲁藏布江下游墨脱江段及察隅河的墨脱裂腹鱼进行遗传多样性及种群历史动态分析。结果显示, 167尾墨脱裂腹鱼样本共检测到21个单倍型, 呈现较高的单倍型多样性(h=0.768)和较低的核苷酸多样性(π=0.00167)。基于单倍型构建的分子系统发育树及Network网络关系图表明, 所有来自墨脱江段及察隅河的单倍型不能按照地理分布各自聚类, 而是相互混杂聚在一起。不同地理种群间的遗传分化指数(FST)为–0.014—0.771, 其中金珠藏布(JZZB)与其他种群呈现出高度分化(FST: 0.372—0.771)。分子方差分析(AMOVA)显示当JZZB种群为一组, 剩余6个种群为一组时, 组间遗传差异最大, 表明JZZB种群与其他种群具有显著分化。相反, 虽然察隅河与墨脱江段的地理距离较远, 但是察隅河与墨脱江段其他种群之间(除了JZZB)的FST为0.093—0.169, 仅显示中等分化水平, 表明察隅河种群与雅鲁藏布江种群尚有少量的基因交流。中性检验、错配分析及BSP (Bayesian skyline plot)分析显示, 雅鲁藏布江下游墨脱江段及察隅河的墨脱裂腹鱼种群在末次间冰期(0—0.137 Ma)发生过种群扩张现象。  相似文献   

17.
研究采用线粒体DNA Cyt b和D-loop基因分析西辽河、松花江和穆棱河3条水系董氏须鳅(Barbatula toni)的遗传多样性和种群结构, 并探讨其种群演变历史。结果表明: 3条水系119个董氏须鳅样本共检测出57个单倍型, 各群体间不存在共享单倍型; 3个董氏须鳅地理群体均呈现出较高的单倍型多样性(0.805—0.926)和较低的核苷酸多样性(0.00095—0.00458); AMOVA分子方差分析、群体间分化指数(FST)、系统发育树及单倍型网络图均表明3个地理种群已经出现高度分化, 群体间遗传变异占总变异的79.45%, 遗传分化显著(P<0.01)。中性检验和错配分析表明, 松花江和穆棱河群体历史上发生了群体快速扩张。参考鳅科鱼类Cyt b基因0.68—0.84%/Ma的进化速率, 估算3个地理群体的分歧时间为1.082—0.669 Ma前, 松花江和穆棱河群体扩张时间为0.071—0.047 Ma前, 推测我国董氏须鳅在中更新世期随冰期迁移至不同避难所, 形成各地理群体, 并于晚更新世早期经历了群体扩张事件。  相似文献   

18.
Vicariance and dispersal can strongly influence population genetic structure and allopatric speciation, but their importance in the origin of marine biodiversity is unresolved. In transitional estuarine environments, habitat discreteness and dispersal barriers could enhance divergence and provide insight to evolutionary mechanisms underlying marine and freshwater biodiversity. We examined this by assessing phylogeographic structure in the widespread amphipod Gammarus tigrinus across 13 estuaries spanning its northwest Atlantic range from Quebec to Florida. Mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 1 phylogenies supported deep genetic structure consistent with Pliocene separation and cryptic northern and southern species. This break occurred across the Virginian-Carolinian coastal biogeographic zone, where an oceanographic discontinuity may restrict gene flow. Ten estuarine populations of the northern species occurred in four distinct clades, supportive of Pleistocene separation. Glaciation effects on genetic structure of estuarine populations are largely unknown, but analysis of molecular variance (AMOVA) supported a phylogeographic break among clades in formerly glaciated versus nonglaciated areas across Cape Cod, Massachusetts. This finding was concordant with patterns in other coastal species, though there was no significant relationship between latitude and genetic diversity. This supports Pleistocene vicariance events and divergence of clades in different northern glacial refugia. AMOVA results and private haplotypes in most populations support an allopatric distribution across estuaries. Clade mixture zones are consistent with historical colonization and human-mediated transfer. An isolation-by-distance model of divergence was detected after we excluded a suspected invasive haplotype in the St. Lawrence estuary. The occurrence of cryptic species and divergent population structure support limited dispersal, dispersed habitat distribution, and historical factors as important determinants of estuarine speciation and diversification.  相似文献   

19.
Different scales and frequencies of glaciations developed in Europe and Asia during the Pleistocene. Because species’ responses to climate change are influenced by interactive factors including ecology and local topography, the pattern and tempo of species diversification may vary significantly across regions. The great tit Parus major is a widespread Eurasian passerine with a range that encircles the central Asian desert and high‐altitude areas of the Tibetan Plateau. A number of genetic studies have assessed the effect of paleo‐climate changes on the distribution of the European population. However, none have comprehensively addressed how paleo‐climate change affected the distribution of the great tit in China, an apparent hotspot of P. major subspecific diversity. Here, we describe likely paleo‐climatic effects on P. major populations in China based on a combination of phylogeography and ecological niche models (ENMs). We sequenced three mitochondrial DNA markers from 28 populations (213 individuals), and downloaded 112 sequences from outside its Chinese range. As the first step in clarifying the intra‐specific relationships among haplotypes, we attempted to clarify the divergence and demography of populations in China. Phylogeographic analysis revealed that P. major is comprised of five highly divergent clades with geographic breaks corresponding to steep mountains and dry deserts. A previously undescribed monophyletic clade with high genetic diversity, stable niches and a long and independent evolutionary history was detected in the mountainous areas of southwest China. The estimated times at which these clades diverged was traced back to the Early‐Middle Pleistocene (2.19–0.61 mya). Contrary to the post‐LGM (the Last Glacial Maximum) expansion of European populations, demographic history indicates that Asian populations expanded before the LGM after which they remained relatively stable or grew slowly through the LGM. ENMs support this conclusion and predict a similar distribution in the present and the LGM. Our genetic and ecological results demonstrate that Pleistocene climate changes shaped the divergence and demography of P. major in China.  相似文献   

20.
This study examined the phylogeography and population demographics of Cambarus tenebrosus , which has an unusually large distribution for a freshwater crayfish species, encompassing the Interior Lowlands and Cumberland Plateau of the eastern United States. This facultative cave-dweller provides a unique perspective on the biologic connections between surface and subsurface freshwater ecosystems, which are considered to be highly imperiled due to pollution and habitat degradation. The 16S mitochondrial gene was sequenced for 233 individuals from 84 cave and 20 surface locations throughout the range, with most sampling concentrated around the Cumberland Plateau of the southern Appalachians, to assess conservation status of this species and examine the extent of gene flow between the two habitat types. Cave and surface populations formed a single monophyletic group relative to Cambarus striatus , and clades showed strong geographical associations, but lacked habitat structuring. Occupation of subterranean environments does not appear to be a recent event in the evolutionary history of the species. The large amount of genetic diversity within the species, coupled with its ability to inhabit surface and subsurface environments, suggests that this species may pose a threat as a possible invasive species in other karst-dominated landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号