首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
恶臭假单胞菌ND6菌株的萘降解质粒pND6-1中编码儿茶酚1,2-双加氧酶的catA基因在大肠杆菌中进行了克隆和表达,并研究表达产物的酶学性质。结果表明:酶的Km为0.019μmol/L,Vmax为1.434μmol/(min.mg);具有很好的耐热性,在50℃保温45min后仍能够保留酶活力的93.7%;Fe2 对酶活性有显著的促进作用,其比活力是对照反应的292%;酶对4-氯儿茶酚的催化活性非常低,属于Ⅰ型儿茶酚1,2-双加氧酶。以萘为底物生长时,ND6菌株的细胞提取液中既存在催化邻位裂解途径的儿茶酚1,2-双加氧酶活性,也存在催化间位裂解途径的儿茶酚2,3-双加氧酶活性。以苯甲酸、对羟基苯甲酸和苯乙酸为唯一碳源生长时,ND6菌株细胞提取液的儿茶酚1,2-双加氧酶活性远远大于儿茶酚2,3-双加氧酶活性。表明ND6菌株既能通过儿茶酚间位裂解途径降解萘,也能通过儿茶酚邻位裂解途径降解萘,而以苯甲酸、对羟基苯甲酸和苯乙酸为诱导物时只利用儿茶酚邻位裂解途径。  相似文献   

2.
邻苯二酚2,3-双加氧酶的结构和功能研究进展   总被引:2,自引:0,他引:2  
邻苯二酚是所有芳香族化合物降解过程中的重要的中间产物,其降解有邻位和间位裂解两条裂解途径,分别由邻苯二酚1,2-双加氧酶(C12O)和邻苯二酚2,3-双加氧酶(C23O)催化裂解。本综述简要介绍了邻苯二酚2,3-双加氧酶的结构和功能的研究进展。  相似文献   

3.
邻苯二酚是芳香族化合物多条生物降解途径中共有的一种重要的中间产物,根据开环方式的不同,可分为邻位降解途径和间位降解途径,其中邻位降解途径中的关键酶是邻苯二酚1,2-双加氧酶。本文主要综述了邻苯二酚1,2-双加氧酶的结构、酶学性质,以及它在芳香烃降解菌中存在的同工酶现象及其功能研究进展。  相似文献   

4.
胡婷  谷洁  甄丽莎  杨玖  史龙翔  王小娟  高华 《生态学报》2014,34(5):1140-1148
以苯酚为唯一碳源,采用富集培养方法,从陕北靖边油田污染土壤中分离获得1株苯酚高效降解菌(ad049),对菌株进行形态观察、生理生化检验及16S rDNA序列分析,确定该菌株为红球菌(Rhodococcus)。采用摇瓶振荡培养方法,研究了接种量、pH值、温度和底物浓度对ad049生长量和苯酚降解率的影响,同时对该菌株脱氢酶和邻苯二酚双加氧酶活性进行了测定。结果表明,ad049具有较强的苯酚降解能力;在苯酚浓度1000 mg/L,温度35℃,pH值8,接种量5%的培养条件下,反应24 h后,苯酚降解率达99%以上,且整个降解过程符合零级动力学方程,速率常数k_0=41.51,相关系数R~2=0.96。通过邻苯二酚双加氧酶活性的测定,推测出该菌株降解苯酚的途径可能是以邻苯二酚1,2双加氧酶为主要途径进行邻位开环,辅以邻苯二酚2,3双加氧酶进行间位开环。  相似文献   

5.
微生物降解苯甲酸的研究进展   总被引:3,自引:0,他引:3  
张晓云  盖忠辉  台萃  许平 《微生物学通报》2012,39(12):1808-1816
苯甲酸在工业中的广泛应用使其成为环境中的常见污染物,对微生物好氧降解苯甲酸的邻位途径、间位途径、龙胆酸途径和原儿茶酸途径及厌氧降解途径等进行总结,并对苯甲酸降解过程中发挥重要作用的苯甲酸双加氧酶的种类、不同组分及苯甲酸降解基因和调控基因的基因簇进行介绍,同时展望微生物降解污染物的发展方向。  相似文献   

6.
嗜吡啶红球菌R04的联苯降解途径的研究   总被引:3,自引:0,他引:3  
通过GC-MS测定出嗜吡啶红球菌R04菌降解联苯的中间代谢物2,3-二氢二羟基联苯、2,3-二羟基联苯和苯甲酸,并测定了该菌的2,3-二羟基联苯双加氧酶、2-羟基-6-酮基-6-苯基-2,3-己二烯酸(HOPDA)水解酶和苯甲酸双加氧酶活性。最终确定了R04菌降解联苯的途径为2,3-二羟基联苯双加氧酶途径。  相似文献   

7.
DDTs(dichlorodiphenyltrichloroethane,1,1,1-三氯-2,2-双氯苯基乙烷)是一种典型的持久性有机污染物,曾在疟疾防治和农业除虫方面被广泛应用。虽然包括我国在内的很多国家已经禁止使用DDTs,但目前对环境中DDTs的检测发现它仍然广泛存在且具有新的输入源。DDTs的持续存在对近海生态系统和人类健康具有一定危害,因此它所造成的环境污染问题仍然值得关注。由于Rieske型芳香羟化双加氧酶能够起始多种持久性污染物的降解,过去的几十年里一直是芳香化合物降解领域的焦点。[目的] 为探讨联苯双加氧酶对DDTs的降解特性及机制,本研究选取了食异生素伯克霍尔德氏菌LB400(Burkholderia xenovorans)联苯双加氧酶及突变体对p,p''-DDT和o,p''-DDT的降解过程进行研究。[方法] 以BphAELB400为亲本,通过两步定点突变将283位的丝氨酸突变为蛋氨酸,获得突变体BphAES283M。通过比较亲本酶与突变体对DDTs的催化性能,模拟突变蛋白结构和分子对接等方法,探究其降解特性及机制。[结果] BphAELB400和突变体BphAES283M都无法降解对位的p,p''-DDT,但突变体BphAES283M可以代谢o,p''-DDT并产生2个立体异构体。对接p,p''-DDT的BphAELB400和BphAES283M的结构分析表明,BphAELB400和BphAES283Mp,p''-DDT的反应环均不与原晶体结构中的联苯反应环重合。而对接o,p''-DDT的BphAES283M的结构分析表明o,p''-DDT的反应环与晶体结构中的联苯反应环距离很近,且2、3位的碳原子与单核铁原子催化中心的距离在0.5 nm以内,此外,BphAES283M的催化腔表面积和体积比BphAELB400更大,这很可能有助于BphAES283Mo,p''-DDT的结合。[结论] 283位氨基酸是影响BphAELB400对DDTs的催化代谢能力的关键氨基酸残基,它可以通过调节反应碳原子与催化中心的距离以及催化腔的大小来影响底物特异性。本次研究进一步阐明了283位氨基酸残基的影响机理,为更有效修复DDTs污染提供理论依据和技术支持。  相似文献   

8.
从某农药厂二沉池污泥中筛选分离得到两株革兰氏阴性的芳香烃降解菌ZD41和ZD43。经鉴定,它们分别属于Comamonas testosteroniPseudomonas aeruginosa。基于16S rDNA 序列的系统分类分析,结果表明,在分类地位上菌株ZD41和ZD43 分别属于两个不同的分类亚组。苯酚降解产物紫外光谱扫描和双加氧酶检测证明,菌株ZD41利用邻裂途径降解苯酚,而ZD43则通过间裂途径降解苯酚,邻裂途径的1,2双加氧酶和间裂途径的2,3双加氧酶都是可诱导的双加氧酶,其活性强烈的依赖于降解底物的出现。芳香烃降解试验结果表明,邻裂和间裂两种途径的降解性能不一样,虽然ZD43降解苯酚的效率要高于菌株ZD41,但是ZD41降解苯酚的pH值范围以及芳烃利用基质谱宽于后者。  相似文献   

9.
[背景] 工业酵母菌株的蛋白质表达通常存在表达量低、分泌效率低的问题。[目的] 考察失活Yapsin蛋白酶Yps1p和Yps2p对β-葡萄糖苷酶在酿酒酵母An-α菌株中表达的影响。[方法] 利用CRISPR/Cas9基因组编辑技术,首先构建得到未折叠蛋白响应(Unfolded Protein Response,UPR)指示菌株An-α(leu2::UPRE-lacZ)即An-αL,然后分别失活其YPS1和YPS2基因,导入以YEplac195为载体的β-葡萄糖苷酶表达质粒(简称BG),进行生长和酶活分析评价。[结果] 菌株An-αL的YPS1和YPS2基因失活对其在酵母浸出粉胨葡萄糖(Yeast Extract Peptone Dextrose,YPD)培养基中的生长未造成明显的不利影响;导入质粒BG后将在酵母浸出粉胨纤维二糖(Yeast Extract Peptone Cellobiose,YPC)培养基中生长的最大OD600分别提高了21.9%和7.4%;最大总酶活值为0.087 5和0.068 6 U/(mL·OD600),是对照菌株相应值的2.268倍和1.778倍;分泌比例提高了19.4%和22.2%;β-葡萄糖苷酶表达水平与β-半乳糖苷酶酶活水平所代表的UPR信号响应值之间呈现良好的相关性。[结论] YPS1和YPS2基因失活有助于改进酿酒酵母An-α菌株中β-葡萄糖苷酶的分泌表达。  相似文献   

10.
以Azo-xylan为底物,利用双层平板法从堆肥中筛选到可降解木聚糖的菌株,16S rRNA测序分析显示该菌株与糖丝菌属(Saccharothrix variisporea)的同源性最高(99.33%),命名为S. variisporea YJ。研究发现以酵母提取物或(NH4)2SO4作为氮源、甘蔗叶作为碳源、初始pH值 7.0、发酵温度40 ℃、发酵时间5 d时,发酵液中木聚糖酶的酶活性最高。酶学性质研究表明该木聚糖酶的最适反应温度及pH值分别为55 ℃和8.0,在55 ℃以下及pH值 4.0~10.0的范围内保持较高稳定性。Na+能有效提高木聚糖酶活性,Mg2+和Mn2+没有明显影响,Cu2+则严重抑制木聚糖酶活性。此外,发酵液还可以直接对天然底物玉米芯进行降解。  相似文献   

11.
Degradation of para-toluate by Rhodococcus opacus 1cp was investigated. Activities of the key enzymes of this process, catechol 1,2-dioxygenase and muconate cycloisomerase, are detected in this microorganism. Growth on p-toluate was accompanied by induction of two catechol 1,2-dioxygenases. The substrate specificity and physicochemical properties of one enzyme are identical to those of chlorocatechol 1,2-dioxygenase; induction of the latter enzyme was observed during R. opacus 1cp growth on 4-chlorophenol. The other enzyme isolated from the biomass grown on p-toluate exhibited lower rate of chlorinated substrate cleavage compared to the catechol substrate. However, this enzyme is not identical to the catechol 1,2-dioxygenase cloned in this strain within the benzoate catabolism operon. This supports the hypothesis on the existence of multiple forms of dioxygenases as adaptive reactions of microorganisms in response to environmental stress.  相似文献   

12.
Liu Y  Zhang J  Zhang Z 《Biodegradation》2004,15(3):205-212
A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol > 3,4-dihydroxyphenanthrene > 3-chlorocatechol.  相似文献   

13.
S Li  H Zhao  Y Li  S Niu  B Cai 《Journal of bacteriology》2012,194(18):5154-5155
Pseudomonas putida strain ND6 is an efficient naphthalene-degrading bacterium. The complete genome of strain ND6 was sequenced and annotated. The genes encoding the enzymes involved in catechol degradation by the ortho-cleavage pathway were found in the chromosomal sequence, which indicated that strain ND6 is able to metabolize naphthalene by the catechol meta- and ortho-cleavage pathways.  相似文献   

14.
Six species of free-living nitrogen fixing bacteria, Azomonas agilis, Azospirillum brasilense, Azospirillum lipoferum, Azotobacter chroococcum, Azotobacter vinelandii, and Beijerinckia mobilis, were surveyed for their ability to grow and fix N2 using aromatic compounds as sole carbon and energy source. All six species grew and expressed nitrogenase activity on benzoate, catechol, 4-hydroxybenzoate, naphthalene, protocatechuate, and 4-toluate. In many cases, growth rates on one or more aromatic compounds were comparable to or greater than those on the non-aromatic substrates routinely used for cultivation of the organisms. Specific activity of nitrogenase in extracts of aromatic-grown cells often exceeded that in cells grown on non-aromatic substrates. All six species growing on substrates typically converted to catechol expressed inducible catechol 1,2-dioxygenase and/or catechol 2,3-dioxygenase. When grown on substrates typically converted to protocatechuate, inducible protocatechuate 3,4-dioxygenase and/or protocatechuate 4,5-dioxygenase was expressed. A. chroococcum expressed only ortho cleavage dioxygenases during growth on naphthalene and 4-toluate and only meta cleavage dioxygenases on the other aromatics. B. mobilis expressed only ortho cleavage dioxygenases. The other four species examined expressed both ortho and meta cleavage enzymes.A preliminary account of this work was presented at the 91st General Meeting of the American Society for Microbiology, Dallas, TX, 1991  相似文献   

15.
Ralstonia sp. Ba-0323, a wild strain isolated from soil, produced catechol from benzoate and accumulated it outside the cells. The bacterium produced a maximal amount of catechol (1.6 mg/ml) from 3 mg/ml of sodium benzoate in a 20-h growing culture. The conversion rate of benzoate to catechol was 70% on a molar basis. The catechol production by the resting cells increased in the presence of glycerol, and the maximal amount of catechol produced from 3 mg/ml of sodium benzoate reached 1.9 mg/ml at the conversion rate of 83% after 8 h of incubation. Catechol 1,2-dioxygenase, which catalyzed the ring cleavage of catechol, was purified to homogeneity from a cell extract of Ralstonia sp. Ba-0323 growing on benzoate and characterized. The specific activity of the purified enzyme was much lower than those of the dioxygenases from other microorganisms reported. The Km for catechol of the purified enzyme was much higher than those of other dioxygenases. In addition, the NH2-terminal amino acid sequence of the enzyme was less similar to the other catechol 1,2-dioxygenases than they are to each other.  相似文献   

16.
Pseudomonas vesicularis and Staphylococcus sciuri were isolated as dominant strains from phenol-acclimated activated sludge. P. vesicularis was an efficient degrader of phenol, catechol, p-cresol, sodium benzoate and sodium salicylate in a single substrate system. Under similar conditions S. sciuri degraded only phenol and catechol from among aromatic compounds that were tested. Cell-free extracts of P. vesicularis grown on phenol (376 mg l(-1)), sodium benzoate (576 mg l(-1)) and sodium salicylate (640 mg l(-1)) showed catechol 2,3-dioxygenase activity initiating an extradiol (meta) splitting pathway. The degradative intradiol (ortho) pathway as a result of catechol 1,2-dioxygenase synthesis was induced in P. vesicularis cells grown on catechol (440 mg l(-1)) orp-cresol (432 mg l(-1)). Catechol 1,2-dioxygenase and the ortho-cleavage has been also reported in S. sciuri cells capable of degrading phenol (376 mg l(-1)) or catechol (440 mg l(-1)). In cell-free extracts of S. sciuri no meta-cleavage enzyme activity was detected. These results demonstrated that gram-positive S. sciuri strain was able to effectively metabolize some phenols as do many bacteria of the genus Pseudomonas but have a different capacity for degrading of these compounds.  相似文献   

17.
Rhodococcus rhodochrous strain CTM co-metabolized 2-methylaniline and some of its chlorinated isomers in the presence of ethanol as additional carbon source. Degradation of 2-methylaniline proceeded via 3-methylcatechol, which was metabolized mainly by meta-cleavage. In the case of 3-chloro-2-methylaniline, however, only a small proportion (about 10%) was subjected to meta-cleavage; the chlorinated meta-cleavage product was accumulated in the culture fluid as a dead-end metabolite. In contrast, 4-chloro-2-methylaniline was degraded via ortho-cleavage exclusively. Enzyme assays showed the presence of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase as inducible enzymes in strain CTM. Extended cultivation of strain CTM with 2-methylaniline and 3-chloro-2-methylaniline yielded mutants, including R. rhodochrous strain CTM2, that had lost catechol 2,3-dioxygenase activity; these mutants degraded the aromatic amines exclusively via the ortho-cleavage pathway. DNA hybridization experiments using a gene probe revealed the loss of the catechol 2,3-dioxygenase gene from strain CTM2.  相似文献   

18.
New Planococcus sp. strain S5 able to grow on salicylate or benzoate as sole carbon source was isolated from activated sludge adapted to sodium salicylate degradation. S5 was determined to be a strictly aerobic, gram-positive, catalase positive, oxidase negative, non-motile, non-spore forming coccus. The strain harboured a plasmid, named pLS5. The S5 strain when grown on salicylate expressed both catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activities and degraded this substrate by both the ortho and meta pathways while grown on benzoate expressed only catechol 1,2-dioxygenase activity. Curing of the plasmid from the strain showed that plasmid pLS5 was involved in salicylate degradation by the meta pathway.  相似文献   

19.
The combined analysis of peptide mass fingerprinting and 2-DE/MS using the induced and selected protein spots following growth of Pseudomonas sp. DU102 on benzoate or p-hydroxybenzoate revealed not only alpha- and beta-subunits of protocatechuate 3,4-dioxygenase but also catechol 1,2-dioxygenase responsible for ortho-pathway through ring-cleavage of aromatic compounds. Toluate 1,2-dioxygenase and p-hydroxybenzoate hydroxylase were also identified. Purification of intradiol dioxygenases such as catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase from the benzoate or p-hydroxybenzoate culture makes it possible to trace the biodegradation pathway of strain DU102 for monocyclic aromatic hydrocarbons. Interestingly, vanillin-induced protocatechuate 3,4-dioxygenase was identical in amino acid sequences with protocatechuate 3,4-dioxygenase from p-hydroxybenzoate.  相似文献   

20.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号