首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cre/lox系统通过其Cre重组酶对lox序列进行切割和重新连接,介导lox序列发生特异性重组。利用重组报告基因系统Pactin-lox-hpt-lox-gusA,对Cre/lox系统在水稻(Oryza sativa L.)中介导转基因的剔除进行了研究。Pactin-lox-hpt-lox-gusA系统中选择标记hpt基因侧翼含两个同向lox位点,并位于水稻actin1启动子和gusA基因之间。当hpt在Cre酶作用下被剔除时,actin1启动子可以和gusA基因融合在一起从而驱动GUS表达。通过农杆菌介导获得了分别转cre基因、Pactin-lox-hpt-lox-gusA结构和双价抗虫基因lox-hpt-lox-sck-cryIAc结构的水稻。利用有性杂交方法将cre基因导入到转化lox结构的植株中。在4个转Pactin-lox-hpt-lox-gusA T0植株×转cre T0植株所配组合的30个杂交F1植株中,12个植株表达GUS活性,9个表现潮霉素敏感,表明hpt基因被剔除。研究进一步通过Cre/lox介导剔除转双价抗虫sck  cryIAc基因籼稻恢复系明恢86材料基因组中的选择标记hpt基因。在9个转lox-hpt-lox-sck-cryIAc T2代纯合植株×转creT2代纯合植株所配组合的77个杂交F1植株中, 56个植株表现潮霉素敏感。分子分析证实在这些对潮霉素敏感的植株中hpt基因已经被剔除。  相似文献   

2.
将置于两个同向lox位点之间的Bar基因表达盒与大豆胰蛋白酶抑制剂SKTI基因表达盒融合后获得相应植物表达载体,转化烟草Wisconsin 38后获得对棉铃虫具有明显抗性的SKTI转基因植株。SKTI转基因植株通过叶盘二次转化法导入Cre基因,对再生植株叶盘进行Basta的抗性检测,检测Bar基因的删除情况。结果表明:绝大多数再生植株对应叶盘在含8 mg/L PPT的筛选培养基上无法再生,Bar基因被删除的效率在38%~100%之间。对Bar基因删除区域进行PCR及克隆测序后发现Bar基因表达盒被精确删除。对Bar基因删除植株开花自交获得的分离后代进行NPTⅡ抗性检测,5株NPTⅡ敏感植株分子检测显示均只含有SKTI基因而无Cre基因存在,为无选择标记基因的SKTI转基因植株。  相似文献   

3.
Cre/lox系统通过其Cre重组酶对lox序列进行切割和重新连接,介导lox序列发生特异性重组.利用重组报告基因系统Pactin-lox-hpt-lox-gusA,对Cre/lox系统在水稻(Oryzasativa L.)中介导转基因的剔除进行了研究.Pactin-lox-hpt-lox-gusA系统中选择标记hpt基因侧翼含两个同向lox位点,并位于水稻actinl启动子和gusA基因之间.当hpt在Cre酶作用下被剔除时,actinl启动子可以和gusA基因融合在一起从而驱动GUS表达.通过农杆菌介导获得了分别转cre基因、Pactin-lox-hpt-lox-gusA结构和双价抗虫基因lox-hpt-lox-sck-cryIAc结构的水稻.利用有性杂交方法将cre基因导入到转化lox结构的植株中.在4个转Pactin-lox-hpt-lox-gusA T0植株×转cre T0植株所配组合的30个杂交F1植株中,12个植株表达GUS活性,9个表现潮霉素敏感,表明hpt基因被剔除.研究进一步通过Cre/lox介导剔除转双价抗虫sck cryIAc基因籼稻恢复系明恢86材料基因组中的选择标记hpt基因.在9个转lox-hpt-lox-sck-cryIAcT2代纯合植株×转creT2代纯合植株所配组合的77个杂交F1植株中,56个植株表现潮霉素敏感.分子分析证实在这些对潮霉素敏感的植株中hpt基因已经被剔除.  相似文献   

4.
5.
一种新的用于删除选择标记基因的Cre/lox系统   总被引:11,自引:0,他引:11  
设计了一种新的诱导型Cre/lox系统,并在转基因烟草(NicotianatabacumL.)中进行了验证。在诱导剂的作用下,位于同向lox位点之间的选择标记基因(hpt)和重组酶基因(Cre)在烟草愈伤组织中被删除。在该系统中,Cre基因在玉米乙酰苯胺类化合物诱导启动子(In5-2)的控制下表达。对转基因后代的分子检测结果表明,不论是否加入了诱导剂,目的基因(gus)均被整合到烟草基因组中;在诱导剂处理的48株转基因烟草T0代中,45株的hpt基因被删除了。该系统只使用一个载体,克服了二次转化系统带来的问题。  相似文献   

6.
绿色荧光蛋白(GFP)可直接进行活体观察,它的这个优点可被用于监测转基因植物中选择标记基因的消除。为此,构建了植物表达载体pGNG,将绿色荧光蛋白基因(gfp)和卡那霉素抗性基因表达盒(NosP-nptll-NosT)一起克隆在两个同向的lox位点间,在第一个lox位点上游置有CaMV 35S启动子以驱动GFP表达,第二个lox位点下游置有不含启动子的大肠杆菌β-葡萄糖醛酸酶(GUS)基因。首先在含卡那霉素(Kan)的培养基上筛选出转pGNG的烟草,借助绿色荧光可容易地检出表达GFP的转化体。然后用另一转化载体pCambia1300Cre二次转化表达GFP的转基因植物,利用另一选择标记基因潮霉素抗性基因(hpt)进行筛选,在获得的再生植株中,Cre重组酶的表达消除了转化体中两lox位点间的gfpnptll。实验结果表明可借助GFP荧光的消失,快速选出nptII被消除的二次转化体,同时GUS(作为目的蛋白) 在CaMV 35S启动子驱动下获得表达。最后利用后代的分离将hptcre除去。  相似文献   

7.
设计了一种新的诱导型Cre/lox系统,并在转基因烟草(Nicotianatabacum L.)中进行了验证.在诱导剂的作用下,位于同向lox位点之间的选择标记基因(hpt)和重组酶基因(Cre)在烟草愈伤组织中被删除.在该系统中,Cre基因在玉米乙酰苯胺类化合物诱导启动子(In5-2)的控制下表达.对转基因后代的分子检测结果表明,不论是否加入了诱导剂,目的基因(gus)均被整合到烟草基因组中;在诱导剂处理的48株转基因烟草To代中,45株的hpt基因被删除了.该系统只使用一个载体,克服了二次转化系统带来的问题.  相似文献   

8.
来源于噬菌体P1的Cre/loxP位点特异性重组系统是目前在植物遗传转化中应用较多,较成熟的一个标记基因删除系统。在这个系统中,Cre酶可以特异性的识别和切割位于两个lox位点之间的标记基因,整个系统重组仅需Cre和lox识别位点即可完成而无需其它辅因子的参加。利用农杆菌介导法成功地将cre基因导入供试材料"皖粳97",得到转hpt-cre基因水稻植株;将其与先期转基因育成的携带loxp-hpt-loxp-bt基因的"皖粳97"株系进行田间杂交,通过PCR分析,Cre/loxP重组系统定向删除了潮霉素抗性筛选标记基因。  相似文献   

9.
Transgenic tobacco plants were produced that contained single-copy pART54 T-DNA, with a 35S-uidA gene linked to loxP-flanked kanamycin resistance (nptII) and cytosine deaminase (codA) genes. Retransformation of these plants with pCre1 (containing 35S transcribed cre recombinase and hygromycin (hpt) resistance genes) resulted in excision of the loxP-flanked genes from the genome. Phenotypes of progeny from selfed-retransformed plants confirmed nptII and codA excision and integration of the cre-linked hpt gene. To avoid integration of the hpt gene, and thereby generate plants totally free of marker genes, we attempted to transiently express the cre recombinase. Agrobacterium tumefaciens (pCre1) was cocultivated with leaf discs of two pART54-transformed lines and shoots were regenerated in the absence of hygromycin selection. Nineteen of 773 (0.25%) shoots showed tolerance to 5-fluorocytosine (5-fc) which is converted to the toxic 5-fluorouracil by cytosine deaminase. 5-fc tolerance in six shoots was found to be due to excision of the loxP-flanked region of the pART54 T-DNA. In four of these shoots excision could be attributed to cre expression from integrated pCre1 T-DNA, whereas in two shoots excision appeared to be a consequence of transient cre expression from pCre1 T-DNA molecules which had been transferred to the plant cells but not integrated into the genome. The absence of selectable marker genes was confirmed by the phenotype of the T1 progeny. Therefore, through transient cre expression, marker-free transgenic plants were produced without sexual crossing. This approach could be applicable to the elimination of marker genes from transgenic crops which must be vegetatively propagated to maintain their elite genotype.  相似文献   

10.
Directed excision of a transgene from the plant genome   总被引:40,自引:0,他引:40  
Summary The effectiveness of loxP-Cre directed excision of a transgene was examined using phenotypic and molecular analyses. Two methods of combining the elements of this system, re-transformation and cross pollination, were found to produce different degrees of excision in the resulting plants. Two linked traits, -glucuronidase (GUS) and a gene encoding sulfonylurea-resistant acetolactate synthase (ALSr), were integrated into the genome of tobacco and Arabidopsis. The ALSr gene, bounded by loxP sites, was used as the selectable marker for transformation. The directed loss of the ALST gene through Cre-mediated excision was demonstrated by the loss of resistance to sulfonylurea herbicides and by Southern blot analysis. The -glucuronidase gene remained active. The excision efficiency varied in F1 progeny of different lox and Cre parents and was correlated with the Cre parent. Many of the lox × Cre F1 progeny were chimeric and some F2 progeny retained resistance to sulfonylureas. Re-transformation of lox/ALS/lox/GUS tobacco plants with cre led to much higher efficiency of excision. Lines of tobacco transformants carrying the GUS gene but producing only sulfonylurea-sensitive progeny were obtained using both approaches for introducing cre. Similarly, Arabidopsis lines with GUS activity but no sulfonylurea resistance were generated using cross pollinations.  相似文献   

11.
Phosphinothricin resistant plants of two rapeseed (Brassica napus L. var. oleifera DC.) spring industrial cultivars were obtained by Agrobacterium tumefaciens leaf disk transformation. Vector constructions contained the promoterless coding sequence of phosphinothricin acetyltransferase (bar) gene located between two inverted lox-sites (elements of Cre/lox recombination system of P1 phage) and selective neomycinphosphotransferase II gene (nptII). Integration of the alien genes was confirmed by the PCR analyses. Stable and linked inheritance of foreign genes in T1 and T2 progeny was shown.  相似文献   

12.
The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.  相似文献   

13.
We have developed a fast and accurate method to engineer the Bacillus subtilis genome that involves fusing by PCR two flanking homology regions with an antibiotic resistance gene cassette bordered by two mutant lox sites (lox71 and lox66). The resulting PCR products were used directly to transform B. subtilis, and then transient Cre recombinase expression in the transformants was used to recombine lox71 and lox66 into a double-mutant lox72 site, thereby excising the marker gene. The mutation process could also be accomplished in 2 days by using a strain containing a cre isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible expression cassette in the chromosome as the recipient or using the lox site-flanked cassette containing both the cre IPTG-inducible expression cassette and resistance marker. The in vivo recombination efficiencies of different lox pairs were compared; the lox72 site that remains in the chromosome after Cre recombination had a low affinity for Cre and did not interfere with subsequent rounds of Cre/lox mutagenesis. We used this method to inactivate a specific gene, to delete a long fragment, to realize the in-frame deletion of a target gene, to introduce a gene of interest, and to carry out multiple manipulations in the same background. Furthermore, it should also be applicable to large genome rearrangement.  相似文献   

14.
Trait genes are usually introduced into the plant genome together with a marker gene. The last one becomes unnecessary after transgene selection and characterization. One of the strategies to produce transgenic plants free from the selectable marker is based on site-specific recombination. The present study employed the transient Cre-lox system to remove the nptII marker gene from potato. Transient marker gene excision involves introduction of Cre protein in lox-target plants by PVX virus vector followed by plant regeneration. Using optimized experimental conditions, such as particle bombardment infection method and application of P19 silencing suppressor protein, 20-27% of regenerated plants were identified by PCR analysis as marker-free. Based on our comparison of the recombination frequencies observed in this study to the efficiency of other methods to avoid or eliminate marker genes in potato, we suggest that PVX-Cre mediated site-specific excisional recombination is a useful tool to generate potato plants without superfluous transgenic sequences.  相似文献   

15.
An efficient genetic transformation method for african tobacco Nicotiana africana Merxm. has been established. African tobacco is a valuable source for cytoplasmic male sterility (CMS) and nuclear encoded resistance to potato virus Y (PVY). N. africana transgenic plants have been obtained using both Agrobacterium-mediated and direct transformation of leaf explants with gold particle bombardment using particle inflow gun. Plasmid vectors containing phosphinothricin resistance gene (bar gene) coding region without promoter and independent 35S promoter between lox sites (lox-bar-35S-lox) and nptII gene were used. Transgenic plants were selected according to growth capacity on the selective medium containing 50 mg/l kanamycin. PCR analyses of kanamycin-resistant plants confirmed the presence of nptII and bar genes in their genome. Agrobacterium-mediated transformation of root explants has proved to be the most efficient transformation method for N. africana.  相似文献   

16.
Saha P  Majumder P  Dutta I  Ray T  Roy SC  Das S 《Planta》2006,223(6):1329-1343
Mannose binding Allium sativum leaf agglutinin (ASAL) has been shown to be antifeedant and insecticidal against sap-sucking insects. In the present investigation, ASAL coding sequence was expressed under the control of CaMV35S promoter in a chimeric gene cassette containing plant selection marker, hpt and gusA reporter gene of pCAMBIA1301 binary vector in an elite indica rice cv. IR64. Many fertile transgenic plants were generated using scutellar calli as initial explants through Agrobacterium-mediated transformation technology. GUS activity was observed in selected calli and in mature plants. Transformation frequency was calculated to be ~12.1%±0.351 (mean ± SE). Southern blot analyses revealed the integration of ASAL gene into rice genome with a predominant single copy insertion. Transgene localization was detected on chromosomes of transformed plants using PRINS and C-PRINS techniques. Northern and western blot analyses determined the expression of transgene in transformed lines. ELISA analyses estimated ASAL expression up to 0.72 and 0.67% of total soluble protein in T0 and T1 plants, respectively. Survival and fecundity of brown planthopper and green leafhopper were reduced to 36% (P<0.01), 32% (P<0.05) and 40.5, 29.5% (P<0.001), respectively, when tested on selected plants in comparison to control plants. Specific binding of expressed ASAL to receptor proteins of insect gut was analysed. Analysis of T1 progenies confirmed the inheritance of the transgenes. Thus, ASAL promises to be a potential component in insect resistance rice breeding programme.  相似文献   

17.
Cre/lox系统可以介导DNA的定点插入和定点删除,可利用其实现转基因动物中"友好位点"的重复利用及标记基因的有效删除.为直观地评估该系统介导的以上两种重组反应的效果,通过标记基因并利用大鼠乳腺癌细胞系SHZ-88进行了模型研究.首先构建了两个载体:a.整合载体pTE-lox2272-DsRed-loxP-GFP-loxP,含有红色荧光标记基因DsRed和绿色荧光标记基因GFP;b.置换载体pT-lox2272-neo-loxP,含有筛选标记基因neo,用以置换DsRed基因.然后,用整合载体转染SHZ-88细胞,并随机挑取了3个同时表达DsRed和GFP的稳定整合细胞克隆.随后用置换载体和Cre表达载体PBS185对以上每个克隆分别进行了3次共转染,通过G418筛选并扩增培养后,总共获得1 070个克隆.通过分析标记基因DsRed和GFP在这些克隆中的表达情况:Cre介导的删除效率为91.1%,定点置换效率为29.3%.最后对部分克隆进行了PCR和DNA印迹鉴定,分子鉴定结果与发光的表型状况一致.这一方法为Cre/lox系统在转基因家畜生产中的进一步应用提供了实验依据.  相似文献   

18.
Wang Y  Chen B  Hu Y  Li J  Lin Z 《Transgenic research》2005,14(5):605-614
In a plant transformation process, it is necessary to use marker genes that allow the selection of regenerated transgenic plants. However, selectable marker genes are generally superfluous once an intact transgenic plant has been established. Furthermore, they may cause regulatory difficulties for approving transgenic crop release and commercialization. We constructed a binary expression vector with the Cre/lox system with a view to eliminating a marker gene from transgenic plants conveniently. In the vector, recombinase gene cre under the control of heat shock promoter and selectable marker gene nptII under the control of CaMV35S promoter were placed between two lox P sites in direct orientation, while the gene of interest was inserted outside of the lox P sites. By using this vector, both cre and nptII genes were eliminated from most of the regenerated plants of primary transformed tobacco through heat shock treatment, while the gene of interest was retained and stably inherited. This autoexcision strategy, mediated by the Cre/lox system and subjected to heat shock treatment to eliminate a selectable marker gene, is easy to adopt and provides a promising approach to generate marker-free transgenic plants.  相似文献   

19.
Thlaspi caerulescens L. is well known as a Zn/Cd hyperaccumulator. The genetic manipulation of T. caerulescens through transgenic technology can modify plant features for use in phytoremediation. Here, we describe the efficient transformation of T. caerulescens using Agrobacterium tumefaciens strain EHA105 harboring a binary vector pBI121 with the nptII gene as a selectable marker, the gus gene as a reporter and a foreign catalase gene. Based on the optimal concentration of growth regulators, the shoot cluster regeneration system via callus phase provided the basis of the genetic transformation in T. caerulescens. The key variables in transformation were examined, such as co-cultivation period and bacterial suspension density. Optimizing factors for T-DNA delivery resulted in kanamycin-resistant transgenic shoots with transformation efficiency more than 20%, proven by histochemical GUS assay and PCR analysis. Southern analysis of nptII and RT-PCR of catalase gene demonstrated that the foreign genes were integrated in the genome of transformed plantlets. Moreover, the activity of catalase enzyme in transgenic plants was obviously higher than in wild-type plants. This method offers new prospects for the genetic engineering of this important hyperaccumulator species.  相似文献   

20.
The elimination of marker genes after selection is recommended for the commercial use of genetically modified plants. We compared the applicability of the two site-specific recombination systems Cre/lox and Flp/FRT for marker gene elimination in maize plants. The selection marker gene pat surrounded by two identically directed lox or FRT sites was introduced into maize. Sexual crossing with plants harboring the corresponding constitutively expressed recombinase led to the precise and complete excision of the lox-flanked marker gene in the F1 progeny, whereas Flp-mediated recombination of FRT sequences occurred rarely. Further examination of site-specific integration was done by biolistic bombardment of immature embryos harboring only one lox site with a lox.uidA sequence with results indicating directed integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号