首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study analyzed the net carbon dioxide (CO2) emission reductions between 2005 and 2050 by using wood for energy under various scenarios of forest management and energy conversion technology in Japan, considering both CO2 emission reductions from replacement of fossil fuels and changes in carbon storage in forests. According to our model, wood production for energy results in a significant reduction of carbon storage levels in forests (by 46% to 77% in 2050 from the 2005 level). Thus, the net CO2 emission reduction when wood is used for energy becomes drastically smaller. Conventional tree production for energy increases net CO2 emissions relative to preserving forests, but fast‐growing tree production may reduce net CO2 emissions more than preserving forests does. When wood from fast‐growing trees is used to generate electricity with gas turbines, displacing natural gas, the net CO2 emission reduction from the combination of fast‐growing trees and electricity generation with gas turbines is about 58% of the CO2 emission reduction from electricity generation from gas turbines alone in 2050, and an energy conversion efficiency of around 20% or more is required to obtain net reductions over the entire period until 2050. When wood is used to produce bioethanol, displacing gasoline, net reductions are realized after 2030, provided that heat energy is recovered from residues from ethanol production. These results show the importance of considering the change in carbon storage when estimating the net CO2 emission reduction effect of the wood use for energy.  相似文献   

2.
This study addresses the spatiotemporal variations at play in China's CO2 emissions, based on an estimation of emission levels in the period 1995–2012 and an provincial analysis of the relationship of CO2 emissions to economic growth and energy consumption. Using a series of econometric models and data on the combustion of fossil fuels and cement manufacturing, the study first estimated CO2 emission levels during the study period, exploring their spatiotemporal pattern. The results indicate that both China's total and its per capita CO2 emissions have increased significantly over the study period, with both measures evidencing a similar evolution (albeit one that is characterized by noticeable regional discrepancies at the provincial level and which displays properties of convergence). From a geographical perspective, we found both total and per capita CO2 emissionsto be higher in China's eastern region than in the country's central and western regions. Panel data analysis was subsequently undertaken in order to quantify the dynamic casual relationship between economic growth, energy consumption, and CO2 emissions. The empirical results indicated that the variables were in fact cointegrated and exhibited a long-run positive relationship. The results of further Granger causality tests indicated the existence of a bidirectional positive causality between economic growth and energy consumption, as well as between energy consumption and CO2 emissions, and a unidirectional positive causality running from economic growth to CO2 emissions. The findings of this study suggest that China is, in the long run, dependent on carbon energy consumption for its rapid economic growth, a dependency which is the cause of considerable increases in CO2 emissions. China should therefore make greater efforts to develop low-carbon technologies and renewable energy, and improve energy efficiency in order to reduce emissions and achieve green economic growth.  相似文献   

3.
中国能源消费碳排放的时空特征   总被引:2,自引:0,他引:2  
舒娱琴 《生态学报》2012,32(16):4950-4960
选择联合国政府间气候变化专门委员会(IPCC)的部门方法和8大类能源,采用1990年至2009年的中国能源统计数据,按照自下而上的思路,对我国各省区的碳排放量进行估算,并从碳排放量、碳排放强度、人均碳排放量和碳排放密指标出发,深入分析了各省区碳排放的时空特征差异。以期对国内碳排放的时空特征分析,有助于决策者和能源分析家提高节能减排政策制定的有效性。  相似文献   

4.
青藏高原东缘生态过渡带碳中和评估与预测   总被引:1,自引:0,他引:1  
高峰  律可心  乔智  马丰魁  姜群鸥 《生态学报》2022,42(23):9442-9455
青藏高原东缘生态过渡带是我国重要的生态功能区和碳库,对该区域碳中和的评估和预测对于中国乃至亚洲的碳排放管理具有重要意义。基于率定的CASA模型估算了2001-2019年青藏高原东缘生态过渡带栅格尺度碳汇量,结合中国碳排放数据库分析近20年碳排放时空演变规律;然后,采用STIRPAT模型和岭回归建立碳排放与人口等6个社会经济指标的弹性关系,并讨论库兹涅兹曲线对碳排放的影响。之后采用情景分析法,设计包括绿色发展等5种不同经济发展情景预测研究区2020-2060年碳排放变化特征;最后,提出假性碳中和并进行定义,结合GM (1,1)模型预测所得碳汇量,探究青藏高原东缘生态过渡带净碳汇量未来不同情景演变趋势,预测与评估不同发展情景研究区碳中和状况。结果表明:研究区碳汇量在2001-2019年间呈波动缓慢上升趋势,研究区碳汇量东南部高西北部较低;而碳排放量增长速率迅速,于2019年达到108Mt左右,是2001年的3.07倍;近20年,研究区碳汇量均大于碳排放量,但二者差距呈减少趋势。STIRPAT模型岭回归系数表明,研究区内存在城镇化率环境库兹涅兹曲线(EKC)效应,随着城镇化率的提升,区域碳排放呈先增加后减少趋势,而对于富裕度无显著EKC效应;在6个影响因素中,人口变量对碳排放的影响最显著,每增加1%的人口,碳排放将增加1.03%左右;在预测的五种不同发展情景中,可持续发展情景(ST)与基准情景(BL)、节能情景(ES)与绿色发展情景(GD)分别在2050年、2040年实现碳达峰,碳达峰时间随着能耗的减少逐渐提前。粗放情景(ETS)在2060年仍未实现碳达峰,并且其碳排放将于2040年左右超过碳汇量,而其余四种情景预测2020-2060年碳汇量始终大于碳排放量,但其净碳汇量均呈先减少后增加的趋势。因此,青藏高原东缘生态过渡带具有较强固碳能力,但如采用不加管制的发展模式,其碳汇量将无法抵消其碳排放量。因此,在规划发展模式与保护生态的同时,应重点控制人口、畜牧业等因素,提高人民与产业的节能减排意识。  相似文献   

5.
我国典型城市化石能源消费CO2排放及其影响因素比较研究   总被引:1,自引:0,他引:1  
郑颖  逯非  刘晶茹  王效科 《生态学报》2020,40(10):3315-3327
城市是化石能源消费和CO_2排放的主要区域。分析典型城市化石能源消费CO_2排放特征,明确不同城市CO_2排放动态及主要影响因素的差异,是开展城市减排行动的重要科学依据。采用IPCC推荐方法及中国的排放参数核算11个典型城市2006—2015年间化石能源消费产生的CO_2排放量。根据各城市经济发展和CO_2排放特征将之分为四类:经济高度发达城市(北京、上海、广州)、高碳排放城市(重庆、乌鲁木齐、唐山)、低排放低增长城市(哈尔滨、呼和浩特和大庆)和低排放高增长城市(贵阳、合肥),并运用对数平均迪氏指数法(Logarithmic Mean Divisia Index,即LMDI分解法)对比分析了四类城市CO_2排放量的影响因素。结果表明:(1)研究期内大部分城市CO_2排放总量有所增加,仅北京和广州呈下降趋势,工业部门CO_2排放在城市排放总量及其变化中占据主导地位;四类城市的人均CO_2排放量表现出与排放总量相似的变化趋势;CO_2排放强度整体上表现为经济高度发达城市(均值为0.88 t CO_2/万元)低排放低增长城市(均值为2.82 t CO_2/万元)低排放高增长城市(均值为3.05 t CO_2/万元)高碳排放城市(均值为6.62 t CO_2/万元)。(2)在城市CO_2排放的影响因素中,经济发展和人口规模均是4类城市CO_2排放增长的促进因素,但经济发展效应的累积贡献值大于人口规模效应;能源强度降低是4类城市CO_2排放最主要的抑制因素,且经济高度发达和高碳排放城市的抑制作用强于其他两类城市;对第三产业GDP年平均增速高于第二产业的6个城市来说,产业结构是CO_2排放的抑制因素;能源结构的变化仅对煤炭消费比重较低且降幅较大的北京和广州的CO_2排放是抑制作用,累积贡献值分别为-21.73Mt和-0.03Mt,而对其他城市,特别是高碳排放城市的CO_2排放具有明显的促进作用。  相似文献   

6.
Jiangsu Province has become one of the most developed regions in China. Economic growth in Jiangsu has occurred along with rising energy-related CO2 emission levels. Thus, the link between economic activity and environmental pressure represents a risk to the global efforts toward CO2 emission reductions. This paper examines the occurrence of a decoupling between the growth rates in economic activity and CO2 emission from energy consumption in Jiangsu from 1995 to 2009. The results indicate that: (1) Along with the rapid economic development, CO2 emission in Jiangsu rose from 18,781.46 × 104 t in 1995 to 52,029.24 × 104 t in 2009, with an average annual growth rate of 7.54%. Our results also show that CO2 emission in Jiangsu Province is dominated by the secondary, which accounts for about 80% of total CO2 emission. (2) During the study period, the whole Jiangsu economy experienced weak decoupling and strong decoupling except 2003–2005. However the decoupling states for the secondary and tertiary industries are similar to that of the whole economy.  相似文献   

7.
China has frequently been questioned about the data transparency and accuracy of its energy and emission statistics. Satellite‐derived remote sensing data potentially provide a useful tool to study the variation in carbon dioxide (CO2) mass over areas of the earth's surface. In this study, Greenhouse gases Observing SATellite (GOSAT) tropospheric CO2 concentration data and NCEP/NCAR reanalysis tropopause data were integrated to obtain estimates of tropospheric CO2 mass variations over the surface of China. These variations were mapped to show seasonal and spatial patterns with reference to China's provincial areas. The estimates of provincial tropospheric CO2 were related to statistical estimates of CO2 emissions for the provinces and considered with reference to provincial populations and gross regional products (GRP). Tropospheric CO2 masses for the Chinese provinces ranged from 53 ± 1 to 14,470 ± 63 million tonnes were greater for western than for eastern provinces and were primarily a function of provincial land area. Adjusted for land area troposphere CO2 mass was higher for eastern and southern provinces than for western and northern provinces. Tropospheric CO2 mass over China varied with season being highest in July and August and lowest in January and February. The average annual emission from provincial energy statistics of CO2 by China was estimated as 10.3% of the average mass of CO2 in the troposphere over China. The relationship between statistical emissions relative to tropospheric CO2 mass was higher than 20% for developed coastal provinces of China, with Shanghai, Tianjin, and Beijing having exceptionally high percentages. The percentages were generally lower than 10% for western inland provinces. Provincial estimates of emissions of CO2 were significantly positively related to provincial populations and gross regional products (GRP) when the values for the provincial municipalities Shanghai, Tianjin, and Beijing were excluded from the linear regressions. An increase in provincial GRP per person was related to a curvilinear increase in CO2 emissions, this being particularly marked for Beijing, Tianjin, and especially Shanghai. The absence of detection of specific elevation of CO2 mass in the troposphere above these municipalities may relate to the rapid mixing and dispersal of CO2 emissions or the proportion of the depth of the troposphere sensed by GOSAT.  相似文献   

8.
Different from previous studies which mainly focused on conventional estimation techniques, this paper examines the CO2 EKC hypothesis of China using a spatial panel data model to avoid the coefficient estimation error covering the period of 1997–2012. Furthermore, a comparative analysis of the turning points between the non-spatial panel model and spatial panel model is conducted. The results show that the relationship between economic growth and CO2 emissions shapes as an inverted-N trajectory. Spatial spillovers effects are confirmed to affect the shape of the CO2 environmental Kuznets curve. There exists an apparent block distribution in spatial structure of China's provincial CO2 emissions. Specifically, CO2 emissions have a relatively sharp increase from the eastern regions to the central and the western regions of China. It has also been found that urbanization and coal combustion are main factors on increasing CO2 emissions. While the trade openness contributes to slight decrease in CO2 emissions. The government should make targeted carbon-reduction policies for CO2 emission reduction.  相似文献   

9.
能源活动CO2排放不同核算方法比较和减排策略选择   总被引:1,自引:0,他引:1  
杨喜爱  崔胜辉  林剑艺  徐礼来 《生态学报》2012,32(22):7135-7145
能源活动CO2排放是温室气体排放的最重要部分,这部分CO2排放量的核算是温室气体清单编制和减排方案制定的关键和基础。采用直接法、电热终端法和隐含终端法核算了2009年中国能源消费的CO2排放量,对不同核算法的CO2排放部门分布、部门排放强度进行了比较,明确不同核算方法的差异和适用范围。采用电热终端法的核算结果定量分析了各产业部门和工业行业的经济增长和排放强度变化对中国能源活动CO2排放增长的影响。结果表明,中国2009年隐含终端CO2排放量为65.6亿t,略高于直接和电热终端CO2排放量62.2亿t。3种核算方法的CO2排放部门分布和排放强度有明显的差异:电、热力生产与供应业的直接排放占比为45.2%,而电热终端CO2排放仅占4.5%;制造业的直接法、电热终端法和隐含终端法核算的CO2排放占比分别为35.3% 、61.1%和65.5%,是终端能源消费CO2排放最主要的部门;制造业、电热力生产与供应业和交通运输业的电热终端CO2排放强度分别为2.166、1.72和1.622 t CO2/万元GDP,是排放强度较高的部门。在产业部门中,制造业的色金属冶炼及压延加工业、非金属矿物制品业等5个行业以9.8%的经济增长贡献,排放了52.4%的CO2,是产业结构调整、技术和工程减排的重点;服务业以7.2%的CO2排放,贡献了38.4%的经济增长,应作为中国低碳经济优先发展的产业。  相似文献   

10.
This paper proposes an approach to calculate the time series of cumulative carbon dioxide (CO2) emissions between 1995 and 2014 based on industrial energy consumption data in three Eastern China jurisdictions in Shanghai, Jiangsu and Zhejiang during these two decades. Using the Hodrick-Prescott filter, the fluctuation components of the cumulative CO2-emission time-series data in the three provinces are obtained. Subsequently, a grey correlation-based change-point search algorithm is used to determine change-points in these data. Additionally, the CO2-emission time-series is divided into stages based on the change-points. The cycle characteristics of national energy policies, laws, and regulations are compared with those of the cumulative CO2-emission cycle of the three provinces to analyse the impact of energy policies on CO2 emissions. This study shows that, although the industrial structure and trends in the CO2 emission time-series data of the three provinces are different, their cumulative CO2-emission cycle remains the same from 1995 to 2014. The variation characteristics of the cumulative CO2 emissions for each cycle during this period are well aligned with the stage characteristics of energy policies, laws, and regulations, indicating that energy policies play a consistent role in regulating such emissions. This study examines low-carbon production and sustainable energy development, and offers suggestions for issuing and perfecting energy policies, laws, and regulations, considering the indicators of energy consumption and CO2 emissions.  相似文献   

11.
The purpose of this paper is to explore CO2 emission efficiency in china’s agricultural sector during the period 2001–2012. We also analyze the CO2 emission reduction potential as well as its two main contributors (i.e. technology gap inefficiency and managerial failure). The meta-frontier framework is adopted to reflect technology heterogeneities in China’s agricultural sector among the eastern, central and western regions. Based on the DEA (data envelopment analysis) method, the models are estimated by means of linear programming. Empirical results indicate that CO2 emission efficiency of the agricultural sector in western China is the lowest compared with eastern and central China; stemming from the fact that most provinces in western China generally fall behind in terms of technology. The total potential agricultural CO2 emissions reduction is estimated at 1161.33 million tons, which can be attributed to managerial failure in the case of eastern and central China. For western China, it can be attributed to both technological gap inefficiency and managerial failure.  相似文献   

12.
共享社会经济路径下中国2020—2100年碳排放预测研究   总被引:1,自引:0,他引:1  
张帆  徐宁  吴锋 《生态学报》2021,41(24):9691-9704
碳排放和减碳经济代价研究日益受到学术界和决策者的关注,中国政府做出的关于争取在2060年前实现碳中和的表态引起了国际社会的热议。在此背景下,开展中国未来长时间序列碳排放的情景预测具有切实意义。基于可拓展的随机性环境影响评估模型(STIRPAT)评估了人口、经济和受教育程度对碳排放的影响,对比历史数据并验证了碳排放预测模型的准确性,结合共享社会经济路径(SSPs)情景的设定和模型参数,预测了5种情景下中国2020年至2100年的碳排放轨迹及经济代价。结果表明:(1)考虑碳排放达峰目标的实现,SSP3情景是中国未来发展的最佳情景,在此情景下,中国有望提前三年实现碳排放达峰目标;(2) SSP3情景可使中国年度总碳排放量和人均碳排放量处于相对其他四种情景的最低值,但需要付出累积GDP下降5.49%至8.80%的代价;(3)为完成在2060年前实现碳中和的承诺,中国政府在未来的40年需面对409.36-467.42 Gt的碳中和量;(4)2020年中国的碳排放强度将会较2005年水平下降40.52%至41.39%,2030年碳排放强度将会较2005年水平下降59.64%至60.75%。5种情境中,SSP5情景是降低碳排放强度的最佳情景,可最大程度地超额实现碳排放强度目标。未来,受经济发展、人口增长等重要因素影响,中国政府减碳压力将进一步加大。后疫情时代,考虑到能源供应的减少和高科技产业的发展,碳排放社会成本的上升将为中国创造一个使能源系统脱碳的机遇。中国应在"十四五"期间继续提升能源利用效率、升级产业结构、提倡低碳消费、实施隐含碳战略,以尽快实现碳减排目标。  相似文献   

13.
The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature ‘well below 2°C’ and to ‘aim to limit the increase to 1.5°C’. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international ‘pro-growth’ strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve ‘sustainable development’ goals.  相似文献   

14.
We analyzed the magnitude, the trends and the uncertainties of fossil‐fuel CO2 emissions in the European Union 25 member states (hereafter EU‐25), based on emission inventories from energy‐use statistics. The stability of emissions during the past decade at EU‐25 scale masks decreasing trends in some regions, offset by increasing trends elsewhere. In the recent 4 years, the new Eastern EU‐25 member states have experienced an increase in emissions, reversing after a decade‐long decreasing trend. Mediterranean and Nordic countries have also experienced a strong acceleration in emissions. In Germany, France and United Kingdom, the stability of emissions is due to the decrease in the industry sector, offset by an increase in the transportation sector. When four different inventories models are compared, we show that the between‐models uncertainty is as large as 19% of the mean for EU‐25, and even bigger for individual countries. Accurate accounting for fossil CO2 emissions depends on a clear understanding of system boundaries, i.e. emitting activities included in the accounting. We found that the largest source of errors between inventories is the use of distinct systems boundaries (e.g. counting or not bunker fuels, cement manufacturing, nonenergy products). Once these inconsistencies are corrected, the between‐models uncertainty can be reduced down to 7% at EU‐25 scale. The uncertainty of emissions at smaller spatial scales than the country scale was analyzed by comparing two emission maps based upon distinct economic and demographic activities. A number of spatial and temporal biases have been found among the two maps, indicating a significant increase in uncertainties when increasing the resolution at scales finer than ≈200 km. At 100 km resolution, for example, the uncertainty of regional emissions is estimated to be 60 g C m?2 yr?1, up to 50% of the mean. The uncertainty on regional fossil‐fuel CO2 fluxes to the atmosphere could be reduced by making accurate 14C measurements in atmospheric CO2, and by combining them with transport models.  相似文献   

15.
Bioenergy as well as bioenergy with carbon capture and storage are key options to embark on cost‐efficient trajectories that realize climate targets. Most studies have not yet assessed the influence on these trajectories of emerging bioeconomy sectors such as biochemicals and renewable jet fuels (RJFs). To support a systems transition, there is also need to demonstrate the impact on the energy system of technology development, biomass and fossil fuel prices. We aim to close this gap by assessing least‐cost pathways to 2030 for a number of scenarios applied to the energy system of the Netherlands, using a cost‐minimization model. The type and magnitude of biomass deployment are highly influenced by technology development, fossil fuel prices and ambitions to mitigate climate change. Across all scenarios, biomass consumption ranges between 180 and 760 PJ and national emissions between 82 and 178 Mt CO2. High technology development leads to additional 100–270 PJ of biomass consumption and 8–20 Mt CO2 emission reduction compared to low technology development counterparts. In high technology development scenarios, additional emission reduction is primarily achieved by bioenergy and carbon capture and storage. Traditional sectors, namely industrial biomass heat and biofuels, supply 61–87% of bioenergy, while wind turbines are the main supplier of renewable electricity. Low technology pathways show lower biochemical output by 50–75%, do not supply RJFs and do not utilize additional biomass compared to high technology development. In most scenarios the emission reduction targets for the Netherlands are not met, as additional reduction of 10–45 Mt CO2 is needed. Stronger climate policy is required, especially in view of fluctuating fossil fuel prices, which are shown to be a key determinant of bioeconomy development. Nonetheless, high technology development is a no‐regrets option to realize deep emission reduction as it also ensures stable growth for the bioeconomy even under unfavourable conditions.  相似文献   

16.
This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China’s CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995–2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions.  相似文献   

17.
Plants growing under elevated CO2 concentration may acclimatize to this environmental change by modification of chemical, physiological, and/or morphological traits. As a consequence, not only plant functioning but also plant–insect interactions might be altered, with important consequences particularly for agricultural systems. Whereas most studies have focused on the plant acclimation effects of elevated CO2 with regard to crop growth and productivity, acclimation effects on the behavioral response of insects associated with these plants have been largely neglected. In this study, we used a model system comprised of Brussels sprout Brassica oleraceae var. gemmifera and a specialized herbivorous insect, the cabbage aphid Brevicoryne brassicae, to test for the effects of various periods of exposure to an elevated (2× ambient) CO2 concentration on key plant functional traits and on host plant location behavior by the insect, assessed as plant colonization rates. Elevated CO2 had no measurable effect on colonization rates or total plant volatile emissions after a 2-week exposure, but it led to 15 and 26 % reductions in plant colonization rates after 6- and 10-week exposures, respectively. This reduction in plant colonization was associated with significant decreases in leaf stomatal conductance and plant volatile emission. Terpene emission, in particular, exhibited a great reduction after the 10-week exposure to elevated CO2. Our results provide empirical evidence that plants might acclimatize to a future increase in CO2, and that these acclimation responses might affect host plant choice and colonization behavior by herbivorous insects, which might be advantageous from the plant’s perspective.  相似文献   

18.
Increasing bioenergy production from forest harvest residues decreases litter input to the soil and can thus reduce the carbon stock and sink of forests. This effect may negate greenhouse gas savings obtained by using bioenergy. We used a spatially explicit modelling framework to assess the reduction in the forest litter and soil carbon stocks across Europe, assuming that a sustainable potential of bioenergy from forest harvest residues is taken into use. The forest harvest residue removal reduced the carbon stocks of litter and soil on average by 3% over the period from 2016 to 2100. The reduction was small compared to the size of the carbon stocks but significant in comparison to the amount of energy produced from the residues. As a result of these land-use-related emissions, bioenergy production from forest harvest residues would need to be continued for 60–80 years to achieve a 60% carbon dioxide (CO2) emission reduction in heat and power generation compared to the fossil fuels it replaces in most European countries. The emission reductions achieved and their timings varied among countries because of differences in the litter and soil carbon loss. Our results show that extending the current sustainability requirements for bioliquids and biofuels to solid bioenergy does not guarantee efficient reductions in greenhouse gas emissions in the short-term. In the longer-term, bioenergy from forest harvest residues may pave the way to low-emission energy systems.  相似文献   

19.
Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax. We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws, A and E and maximal relative transpiring leaf area, (amaxd), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.  相似文献   

20.
Energy consumption and CO2 emissions have been increasing continuously over the past few decades in China and there is a pressing need to replace the fossil fuel‐based economy with an efficient low‐carbon system, tailor‐made to future requirements. China is starting an energy transition with the aim of building an energy system for the future. China has made tremendous progress in increasing the amount of renewable energy and reducing the cost of renewable energy over the last 20 years. According to the 14th 5 year plan, China aims to incorporate 20% of renewable energy to the primary energy mix and attain 27% reduction in CO2 emissions. Bioenergy crops constitute a significant proportion of biomass‐based bioenergy and have recently been promoted by the Chinese Government to help overcome food and fuel conflict. Steps are being taken to promote bioenergy crops on marginal lands in China, and various regions across the country with soil marginality have been evaluated for bioenergy crop cultivation. The present paper reviews the status of bioenergy in China and the potential status of marginal lands from different regions of China. It also elaborates on some of the policies, subsidies and incentives allocated by the Chinese Government for the promotion of biomass‐based energy. Land management and plant improvement strategies were discussed, which are effective in making marginal lands suitable for bioenergy crop cultivation. Managing planting strategies, intercropping and crop rotation are effective management practices used in China for the utilization of marginal lands. A national investigation is desirable for creating an inventory of technical and economic potential of biomass feedstocks that could be planted on marginal lands. This would assist with highlighting the pros and cons of using marginal lands for bioenergy production and effective policy making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号