首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤质量评价是合理利用土壤资源的重要前提。通过采集青藏高原东北缘甘肃省天祝县境内林地(n=9)、草地(n=18)和耕地(n=38)土壤样品,并测定土壤容重、田间持水量和有机质等13项土壤理化性质指标,采用主成分分析和相关性分析构建最小数据集(MDS),建立土壤质量评价指标体系,对3个不同土地利用类型的土壤质量进行综合评价。结果表明: 林地的总孔隙度、毛管孔隙度、田间持水量、毛管持水量、饱和含水量、有机质、全氮和速效钾含量显著高于草地和耕地。林地土壤质量评价指标体系包括田间持水量、有机质、全氮、速效氮和速效钾,土壤质量指数(SQI)介于0.329~0.678,平均值为0.481;草地土壤质量评价指标体系包括田间持水量和速效氮,SQI介于0.302~0.703,平均值为0.469;耕地土壤质量评价指标体系包括毛管持水量、非毛管孔隙度、速效氮、速效磷和速效钾,SQI介于0.337~0.616,平均值为0.462。影响林地、草地和耕地土壤质量的最大障碍指标分别为速效钾、田间持水量和毛管持水量。基于MDS的土壤质量指数能够实现研究区不同土地利用类型土壤质量的准确评价,土壤质量整体上表现为林地>草地>耕地,评价结果对该区域土壤可持续管理具有重要参考价值。  相似文献   

2.
Tillage is known to potentially affect soil quality in various ways. In this study, a soil quality index (SQI) was developed by quantifying several soil attributes either sensitive or insensitive to physical disturbance, using factor analysis as a dimension reduction technique, in order to discriminate different tillage systems. Soil properties including physical (MWD), chemical (pH, organic C, total N, available P and POM contents) and microbial (MBC, MBN, PCM, PNM and three enzymes) parameters were measured to establish a minimum data set (MDS) for the assessment of overall SQI. The soil attributes were determined on samples (0–20 cm depth) collected under moldboard (MP) and disk (DP) plows as conventional tillage (CT), and rotary (RP) and chisel (CP) plows as reduced tillage (RT) systems with a similar plant C input rate and cover crop over a period of six years (2005–2011) in a semi-arid calcareous soil (Calcixerepts) from Central Iran. Results indicated a clear difference in soil quality among the tillage systems with a significant increase of SQI under RT over time, particularly under CP practices. Although RT improved most soil microbial attributes, not all attributes contributed to SQI because of their close interrelationship. The final SQI consisted only of geometric mean of microbial activity (GMA, the square root of the product of PCM and PNM) and geometric mean of enzyme activity (GME, the cube root of the product of enzyme activities). Soil GME and GMA were found to be as key indicators contributing 55% and 36% to SQI, respectively. Therefore, the GME and GMA were the most important indicators effectively discriminating tillage systems, and could be used to monitor the enhancement of soil quality under RT in this semiarid environment. The influence of tillage year on SQI was greater than that of tillage practices. In conclusion, RT systems were characterized by a higher value of SQI, suggesting a good recovery of soil capacity and functions after abandoning CT in the studied area. Smallholder farmers should therefore be aware of the potential for high soil quality in future as a result of continuing RT systems, especially with surface tillage using CP practices.  相似文献   

3.
Conversion of native rangelands to croplands potentially influences soil functions and quality. The aim of the current study was to assess soil quality (SQ) after rangeland conversion and degradation for more than 40 years using an indexing framework and integrated approach. Fifteen soil attributes were measured at two sampling depths (0–20 and 20–40 cm) of paired native undisturbed and adjacent cultivated rangelands at three rangeland sites. The soil organic carbon (OC), electrical conductivity (EC) and arylsulphatase (ARY) activity were found to be the key indicators of the minimum data set and these indicators greatly affected the computed soil quality index (SQI), particularly in the soil surface. The contribution of OC, EC and ARY to the overall SQI was 77, 13 and 10%, respectively. Although rangeland conversion reduced other soil attributes (including aggregate stability, available water capacity, cation exchange capacity, microbial biomass, microbial activity and the activities of urease and invertase enzymes), in particular at the 0–20 cm depth, these variables did not contribute to the estimated SQI values because of their high correlation with OC contents (i.e., strong interdependency). Cultivated rangelands were characterized by a low soil OC content, EC and ARY activity, and consequently a low SQI. A significant decline in SQI value (29–47%) was observed as a result of rangeland conversion to croplands, depending on soil depth considered and scoring function used to compute the SQI. Overall, converting native rangelands to croplands decreased SQ to 52–64% of their potential capacity using a non-linear scoring method. In summary, soil OC, EC and ARY are the most important indicators, which can be used to monitor and asses the degradation of rangeland SQ after conversion to croplands in these arid and semiarid upland environments. This finding is of especial importance because the assessment of SQ allows the successful and straightforward discrimination between rangeland and cropland ecosystems or to quantify land use conversion effects on SQ. It is concluded that the rate of soil changes can be assessed and compared more accurately in the studies of land use conversions in native rangeland ecosystems using the current indexing framework due to its simplicity and quantitative flexibility.  相似文献   

4.
Assessment of management-induced changes in soil quality is important to sustaining high crop yield. A large diversity of cultivated soils necessitate identification development of an appropriate soil quality index (SQI) based on relative soil properties and crop yield. Whereas numerous attempts have been made to estimate SQI for major soils across the World, there is no standard method established and thus, a strong need exists for developing a user-friendly and credible SQI through comparison of various available methods. Therefore, the objective of this article is to compare three widely used methods to estimate SQI using the data collected from 72 soil samples from three on-farm study sites in Ohio. Additionally, challenge lies in establishing a correlation between crop yield versus SQI calculated either depth wise or in combination of soil layers as standard methodology is not yet available and was not given much attention to date. Predominant soils of the study included one organic (Mc), and two mineral (CrB, Ko) soils. Three methods used to estimate SQI were: (i) simple additive SQI (SQI-1), (ii) weighted additive SQI (SQI-2), and (iii) statistically modeled SQI (SQI-3) based on principal component analysis (PCA). The SQI varied between treatments and soil types and ranged between 0–0.9 (1 being the maximum SQI). In general, SQIs did not significantly differ at depths under any method suggesting that soil quality did not significantly differ for different depths at the studied sites. Additionally, data indicate that SQI-3 was most strongly correlated with crop yield, the correlation coefficient ranged between 0.74–0.78. All three SQIs were significantly correlated (r = 0.92–0.97) to each other and with crop yield (r = 0.65–0.79). Separate analyses by crop variety revealed that correlation was low indicating that some key aspects of soil quality related to crop response are important requirements for estimating SQI.  相似文献   

5.
Little information is available to assess the dynamic changes in wetland soil quality in coastal regions, though it is essential for wetland conservation and management. Soil samples were collected in Suaeda salsa wetlands (SWs), Tamarix chinensis wetlands (TWs), Suaeda salsaTamarix chinensis wetlands (STWs), freshwater Phragmites australis wetlands (FPWs) and saltwater Phragmites australis wetlands (SPWs) in three sampling periods (i.e., summer and autumn of 2007 and spring of 2008). According to the flooding characteristics of these wetlands, the study area could be grouped into three sub-regions: short-term flooding region (STFR), seasonal flooding region (SFR) and tidal flooding region (TFR). Soil quality was evaluated using the soil quality index (SQI), which was calculated using the selected minimum data set (MDS) based on principal components analysis (PCA). Our results showed that soil salt content (SSC), total carbon (TC), magnesium (Mg), nitrate nitrogen (NO3-N) and total sulfur (TS) consisted of a MDS among 13 soil properties. The SQI values varied from 0.18 to 0.66 for all soil samples, of which the highest and lowest SQI values were observed in TFR. The average SQI values were significantly higher in summer (0.50 ± 0.13) than in spring (0.37 ± 0.13) and autumn (0.36 ± 0.11) in the whole study area (p < 0.05). The average SQI values followed the order STFR (0.44 ± 0.12) > TFR (0.41 ± 0.15) > SFR (0.35 ± 0.09) although no significant differences were observed among the three regions (p > 0.05). SPWs and SWs soils showed higher SQI values (0.50 ± 0.10 and 0.47 ± 0.15, respectively) than TWs (0.30 ± 0.08) soils (p < 0.05). The SSC was the dominant factor of soil quality with its proportion of 34.1% contributing to the SQI values, followed by TC (24.5%) and Mg (24.1%). Correlation analysis also showed that SQI values were significantly negatively correlated with SSC. SSC might be a characteristic indicator of wetland soil quality assessment in coastal regions. The findings of this study showed that the SQI based on MDS is a powerful tool for wetland soil quality assessment.  相似文献   

6.
《农业工程》2022,42(4):312-321
Rice-based production systems are critical to Nigeria's food security, but their effectiveness has decreased as soil quality deteriorates. A study was conducted on farmers' fields in Kebbi state, Nigeria to assess the long-term effects of cropping systems (rice mono-cropping (RR), rice-cowpea (RC), and rice-onion (RO)) and tillage (conventional tillage (CT) and minimum tillage (MT)) combinations on soil quality indices (SQI). The treatments were RR-CT (T1), RR-MT (T2), RC-CT (T3), RC-MT (T4), RO-CT (T5) and RO-MT (T6). Twelve soil properties that responded to management practices were measured as an unscreened total data set (TDS), and principal component analysis was performed to obtain a minimum data set (MDS). On the TDS and MDS, four SQIs were then calculated using both linear and non-linear scoring functions. Results showed that all the twelve properties varied significantly among the treatments. Treatment 3 had the lowest total nitrogen (TN) (0.31 g/kg) and the highest (0.84 g/kg), was T2. RR system with MT (T2) showed 98, 35, 95 and 138% increase in organic carbon (OC), microbial biomass C (Cmic) and N, and cation exchange capacity (CEC), respectively when compared with T3. Treatment 2 recorded the lowest bulk density (BD) (1.16 Mg/m3) and penetration resistance (0.84 MPa) after 3 years of cropping. Soil TN, CEC, OC, BD and Cmic highly influenced soil quality (SQ) explaining 85% of variation in the TDS and were selected as key indicators of SQ for the production system. All four SQIs differed significantly by treatment, with T2 showing the best strategy for sustaining the highest SQI. Equivalent rice yield (kg/ha) was positively correlated with SQI (R2 = 0.44–0.90) and had a strong relationship with TN, BD and Cmic (R2 = 0.95). The study shows that the MT could counteract any detrimental effect of monocropping in a rice-based production system.  相似文献   

7.
通过田间定位试验探讨了不同生物质炭添加量对红壤性水稻土理化性质、重金属有效性和土壤质量的影响。生物质炭于2017年水稻种植前一次性添加于耕作层(0~17cm),分别设置5个不同处理:CK:0 t·hm^-2,A10:10 t·hm^-2,A20:20 t·hm^-2,A30:30t·hm^-2和A40:40 t·hm^-2,经种植两季水稻后于2018年9月采集耕作层(0~17 cm)和犁底层(17~29 cm)土壤,计算土壤质量指数(SQI),评价土壤质量。结果表明:在耕作层(0~17 cm)和犁底层(17~29 cm),随着生物质炭添加量的增加,土壤容重逐渐降低;土壤孔隙度、pH值、有机质和可溶性有机碳含量增加,铵态氮和有效磷分别在添加量为20和30 t·hm^-2时达到最大值;土壤中脲酶、过氧化氢酶和蔗糖酶的活性降低;生物质炭能够降低有效态Cd、As和Pb的含量,在生物质炭添加量为40 t·hm^-2时最低;在土壤耕作层(0~17cm),有效态Cd、As和Pb含量分别与脲酶、土壤pH值和蔗糖酶呈显著线性相关;在土壤犁底层(17~29 cm),有效态Cd、As和Pb含量分别与脲酶、过氧化氢酶和有效磷含量呈显著线性相关;各处理的SQI由高到低依次为A40>A30>A20>A10>CK,对应的指数值分别为0.641、0.638、0.579、0.533和0.464。这表明,红壤性水稻土的土壤质量在生物质炭添加量为40 t·hm^-2时,达到最佳。综上所述,生物质炭在添加第二年后,能够显著降低红壤性水稻土的有效态重金属含量,提高土壤质量。  相似文献   

8.
科尔沁沙地不同土地利用和管理方式对土壤质量性状的影响   总被引:55,自引:11,他引:44  
苏永中  赵哈林 《应用生态学报》2003,14(10):1681-1686
研究了科尔沁沙地退化草地开垦后,在14年不同的土地利用和管理方式下土壤物理、化学和生物学性状的特征。结果表明,农林(林草)复合利用模式在土壤粒级组成、孔隙分布、持水性能、有机质和N、P养分、酶活性等方面表现出较好的质量性状特征。有机无机配施、精细管理的灌溉农田次之,而粗放管理的旱作农田。土壤质量性状严重恶化,逐步向流沙方向演变,与科尔沁原生景观草地土壤相比,管理良好的利用系统,土壤物理性状、P含量和一些酶活性指标提高,但有机质和全氮含量明显低,表明已退化生态系统C、N库的恢复和重建需要较长的时间。研究结果表明,不同的土地利用方式和管理措施显著影响土壤质量变化的程度和方向;调整土地利用结构,基本农田实行精细管理,旱作农田退耕还草还林是保护土地资源。实现区域生态恢复和重建的根本选择。  相似文献   

9.
火烧对黔中喀斯特山地马尾松林土壤理化性质的影响   总被引:9,自引:0,他引:9  
张喜  朱军  崔迎春  霍达  王莉莉  吴鹏  陈骏  潘德权  杨春华 《生态学报》2011,31(19):5809-5817
在黔中喀斯特山地马尾松人工次生林内取样分析火烧和对照样地间土壤理化指标的变化,研究了火烧对林地土壤理化性质的影响。结果表明马尾松火烧林地表层土壤毛管孔隙度和总孔隙度升高、最大持水量和最小持水量增加,土壤密度和非毛管孔隙度降低、土壤质量含水量和体积含水量减少;土壤有机质、全N量、全P量、全K量,水解N量、有效P量、速效K量、交换性盐基量和pH值增大,阳离子交换量降低。林火对马尾松林地土壤主要理化指标影响的趋势为或表层土壤影响率大于剖面影响率、或表层土壤影响率小于剖面影响率,不同指标在土壤剖面的变化趋势或增加、或降低,对数或幂函数拟合曲线均达相关显著性水平。火烧和对照样地间的表层土壤理化指标变化主要反映了林火影响,近岩层土壤理化指标变化主要是成土母质在空间上的分异,也受生物的影响。乔木层植株死亡率同表层土壤最大持水量、最小持水量、有机质量和全N量的正相关性显著,同土壤密度的负相关性显著;灌木层植株死亡率同表层土壤密度正相关性显著,同毛管孔隙度、总孔隙度、质量含水量、最大持水量、最小持水量、有机质量、全N量、全P量和速效K量的负相关性达显著或极显著水平;灌木层生物损失量同表层土壤密度和有机质量正相关显著,同速效K量的负相关性显著,枯物层生物损失量同pH值的正相关性显著。火烧马尾松林分平均胸径同表层土壤密度正相关性显著,同毛管孔隙度、总孔隙度、质量含水量、最大持水量、最小持水量和有机质量的负相关性显著。  相似文献   

10.
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.  相似文献   

11.
五节芒对重金属污染土壤微生物生物量和呼吸的影响   总被引:6,自引:0,他引:6  
选择3个五节芒在重金属污染地的定居点作为研究样地,其中两个为Pb/Zn矿尾矿砂堆积地(W:黄岩铅锌尾矿;Y:三门铅锌尾矿),一个为冶炼厂附近污染农田(N),分别测定其根围与根际土壤微生物基础呼吸、微生物量碳、微生物量氮、土壤理化特性和土壤重金属含量.结果表明:根际土壤微生物基础呼吸和微生物量氮均显著地高于根围土壤(P<0.05),除了N样地外,微生物量碳在根围与根际之间差异不显著(P>0.05).根际土壤有机碳、总氮(Y样地除外)和离子交换量(N样地除外)低于根围土壤.根际重金属(Pb、Zn、Cu、Cd)总量与DTPA(二乙三胺五乙酸)可提取量普遍低于根围土壤.冗余分析(RDA)表明,根围和根际土壤微生物与土壤理化特性呈不同程度的正相关,而与土壤重金属含量呈现不同程度的负相关.主分量及回归分析同样证明土壤微生物总体变化与土壤理化特性呈正相关(根围R2=0.653;根际R2=0.690),而与重金属含量呈负相关(根围R2=0.610;根际R2=0.662).  相似文献   

12.
新疆棉田土壤质量综合评价方法   总被引:3,自引:0,他引:3  
以新疆主要棉区为研究对象,测定了哈密、博乐、昌吉、奎屯、石河子、阿克苏及喀什棉田土壤耕层的pH、盐分、有机质、全氮、速效磷、速效钾及Cr、Cu、Zn、As、Pb 共计11个指标,综合分析土壤理化性质和重金属含量,采用土壤质量综合指数(SQI)对新疆主要棉区棉田土壤质量进行综合评价.结果表明: 新疆棉区棉田土壤呈碱性,pH均值为7.87,盐分含量均值为3.44 g·kg-1,为轻度盐化土壤,有机质和全氮含量均偏低,速效磷、速效钾含量较为丰富,与第二次全国土壤普查数据相比,土壤pH、盐分含量、有机质和全氮均呈下降趋势,土壤速效磷明显增长,部分地区土壤速效钾呈现出不同程度的升高趋势;Cr、Cu、Zn、As、Pb 5种重金属含量分别为45.88、40.66、68.30、12.88、16.68 mg·kg-1,均未超过国家二级标准,但与新疆土壤元素背景值相比,Cu、Zn、As均有累积现象.当重金属内梅罗综合污染指数(PN)小于0.5时,土壤理化性质越好,土壤综合质量越好.土壤有机质、全氮、Cu、Zn和As是影响新疆棉区棉田土壤质量的重要因素.新疆棉区棉田土壤质量总体属于中等水平,昌吉、奎屯质量最高,SQI为0.52,阿克苏质量最低,SQI为0.31,不同棉区土壤质量呈现为:北疆>东疆>南疆.  相似文献   

13.
湘南烟区生态因素与烤烟质量的综合评价   总被引:13,自引:0,他引:13       下载免费PDF全文
 以湘南烟区气候、土壤等生态因素和烟叶质量状况为基础数据资料,运用模糊数学隶属函数模型对该区的气候适生性、土壤适宜性和烟叶质量可用性进行了综合评价,合理地进行了该区植烟区域的划分。结果表明:1)湘南烟区的气候适生性指数(Climate feasibility index, CFI)为(79.59%±3.96%),变幅为74.71%~83.98%;该区烟叶大田生长期气温适宜,日均温≥20 ℃持续天数较长,≥10 ℃活动积温较高,昼夜温差较小,降雨充沛,相对湿度较高,日照百分率较低。2 )湘南烟区的土壤适宜性指数(Soil feasibility index, SFI)为(43.92%±15.49%),变幅为13.32%~82.82%;该区土壤具有较强的保肥能力,有机质、氮素、速效磷及多种微量元素含量丰富,但pH值中性偏碱,全磷和钾素含量难以满足烟株需求,且交换性钙镁比值不协调,有效硫含量偏高,有效硼缺乏。3)湘南烟叶外观质量指数(Appearance quality index, AQI)和感观质量指数(Sen sory quality index, SQI)分别为(86.65%±3.29%)和(63.08%±0.74%),烟叶成熟度较好,叶片结构疏松,香气质较好,杂气和刺激性相对较小。  相似文献   

14.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   

15.
In this study, we use classical and geostatistical methods to identify characteristics of some selected soil properties including soil particle size distribution, soil organic carbon, total nitrogen, pH and electrical conductivity and their spatial variation in a 5-year recovery degraded sandy grassland after two different grazing intensity disturbance: post-heavy-grazing restoration grassland (HGR) and post-moderately grazing restoration grassland (MGR), respectively, in Horqin steppe, Inner Mongolia, northern China. The objective was to examine effect of grazing intensity on spatial heterogeneity of soil properties. One hundred soil samples were taken from the soil layer 0–15 cm in depth of a grid of 10 m×10 m under each treatment. The results showed that soil fine fractions (very fine sand, 0.1–0.05 mm and silt + clay, <0.05 mm), soil organic carbon and total nitrogen concentrations were significant lower and their coefficients of variation significant higher under the HGR than under the MGR. Geostatistical analysis of soil heterogeneity revealed that soil particle size fractions, organic carbon and total nitrogen showed different degree of spatial dependence with exponential or spherical semivariograms on the scale measured under HGR and MGR. The spatial structured variance account for a large proportion of the sample variance in HGR plot ranging from 88% to 97% for soil particle fractions, organic C and total N, however, except for organic C (88.8%), the structured variance only account for 50% of the sample variance for soil particle fractions and total N in the MGR plot. The ranges of spatial autocorrelation for coarse-fine sand, very fine sand, silt + clay, organic C and total N were 13.7 m, 15.8 m, 15.2 m, 22.2 m and 21.9 m in HGR plot, respectively, and was smaller than in MGR plot with the corresponding distance of 350 m, 144.6 m, 45.7 m, 27.3 m and 30.3 m, respectively. This suggested that overgrazing resulted in an increase in soil heterogeneity. Soil organic C and total N were associated closely with soil particle fractions, and the kriging-interpolated maps showed that the spatial distribution of soil organic C and total N corresponded to the distribution patterns of soil particle fractions, indicating that high degree of spatial heterogeneity in soil properties was linked to the distribution of vegetative and bare sand patches. The results suggested that the degree of soil heterogeneity at field scale can be used as an index for indicating the extent of grassland desertification. Also, the changes in soil heterogeneity may in turn influence vegetative succession and restoration process of degraded sandy grassland ecosystem.  相似文献   

16.
采用时空互代法,以广西北部低山丘陵地区不同林龄(1、2、3、4、5和8 a)桉树人工林为研究对象,探讨林龄对桉树人工林地土壤碳库管理指数的影响及其规律。结果表明:(1)随着林龄的增加,土壤有机碳总体表现为增加的趋势,1~8 a桉树土壤有机碳范围在5.79~15.57 g· kg-1之间,随着土层的加深而降低; 0~40 cm土层土壤有机碳平均含量表现为8 a>5 a>3 a>4 a>2 a>1 a。(2)土壤非活性有机碳、碳储量随林龄和土层的变化规律与土壤有机碳基本一致。土壤活性有机碳含量大小依次表现为8 a>5 a>4 a>3 a>2 a>1 a,占土壤有机碳的比例随林龄变化无明显规律,8 a和其他林龄间均具有显著差异。(3)碳库管理指数随林龄增加整体呈上升趋势,8 a桉树人工林土壤碳组分含量及碳库管理指数均高于10 a对照马尾松林。碳库管理指数与土壤有机碳、非活性有机碳、活性有机碳、碳储量、碳库活度、全氮、容重呈极显著或显著的相关性,不同林龄和土层间碳库管理指数有差异性。适当延长桉树人工林的轮伐周期,减少人为对林地凋落物和林下植被的干扰,将有利于提高土壤的有机碳含量,进而改善土壤质量。  相似文献   

17.
草原土壤有机碳含量的控制因素   总被引:3,自引:0,他引:3  
基于374个高寒草原和温带草原土壤样品的测试结果,运用多元逐步回归分析模型定量评估了土壤环境因子对土壤有机碳(SOC)含量的影响.结果表明:高寒草原土壤有机碳含量(20.18 kg C/m2)高于温带草原(9.23 kg C/m2).土壤理化生物学因子对高寒草原和温带草原SOC含量(10 cm)变化的贡献分别是87.84%和75.00%.其中,土壤总氮含量和根系对高寒草原SOC含量变化的贡献均大于对温带草原SOC含量变化的相应贡献.土壤水分是温带草原SOC含量变化的主要限制性因素,其对SOC含量变化的贡献达33.27%.高寒草原土壤C/N比显著高于温带草原土壤的相应值,揭示了青藏高原高寒草原较高的SOC含量是由于较低的土壤微生物活性所导致.  相似文献   

18.
长期施肥对双季稻区红壤性水稻土质量的影响及其评价   总被引:3,自引:0,他引:3  
为量化27年连续施用化肥及其与猪粪、稻草配施处理对双季稻区土壤质量的影响,选择土壤容重、最大持水量、孔隙度、标准化平均质量直径、pH、阳离子交换量、有效养分、土壤有机质、微生物生物量碳、土壤酶和作物生产力等项目作为评价指标,并根据不同指标所具有的功能归纳为:抗物理退化的能力、养分供应和贮藏的能力、抗生物化学退化的能力、保持作物生产力的能力4项功能,以这4项功能为基础划分土壤质量指数(SQI).结果表明:SQI等级范围为0.544(CK)~0.729(施氮磷钾肥+稻草处理).与施氮磷钾肥(NPK)处理土壤相比,长期非均衡施肥的PK、NP、NK处理土壤质量发生了退化.土壤缺磷和缺钾是限制水稻生产力的主要因素,即使每年施用30 t·hm-2猪粪或4.2 t·hm-2稻草也不能达到满足高产水稻所需要的土壤磷、钾含量水平.长期施用石灰对红壤水稻土质量的提升效果不明显.在南方红壤水稻种植区,氮、磷、钾与有机肥配施是提升土壤质量的最佳措施.  相似文献   

19.
选择黑河中游张掖国家湿地公园和张掖黑河湿地国家级自然保护区为研究对象,对比分析了植物组成、物种多样性、植物生长状态、土壤养分、土壤理化性质及植物土壤间关系。结果显示:湿地公园的植物高度和土壤养分含量(有机碳、全氮、速效氮、全磷、速效钾)显著高于自然保护区,土壤理化性质含量(容重、pH)显著低于自然保护区,表明湿地公园有利于植物生长发育、土壤养分固存、改善土壤质地;自然保护区的植物科属种、多度、物种多样性(多样性指数、丰富度指数、均匀度指数)显著高于湿地公园,表明自然保护区有利于维持植物多样性;两种保护地中影响植物多样性的土壤因子不同,湿地公园物种多样性与土壤全磷和速效磷显著正相关,而自然保护区物种多样性与土壤盐分显著负相关。  相似文献   

20.
祁连山草地生态系统在维护我国西部生态安全方面起着举足轻重的作用。为了解祁连山不同类型草地土壤水分、养分等理化性质与植被分布特征,及土壤理化性质与植被特征的相关关系,于祁连山选取7种类型的草地,测定土壤水分含量、养分含量、容重、颗粒组成和植被特征,计算土壤颗粒的分形维数、0~40 cm土层土壤有机碳、全氮和全磷储量、植物多样性指数。结果表明: 祁连山不同类型草地的土壤理化性质与植被特征差异显著,高寒草甸相比于其他类型草地具有较高的土壤水分、养分和黏粒含量,及较低的容重和砂粒含量;0~40 cm土层土壤有机碳、全氮、全磷储量变化范围分别为3084~45247、164~2358、100~319 g·m-2,整体表现为有机碳和全氮含量高、全磷含量低;土壤全磷储量与植物多样性指数呈显著正相关关系,表明土壤全磷含量是祁连山草地植物多样性的关键影响因素。相比其他草地类型,高寒草甸具有较好的植被状况和土壤水分、养分条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号