首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conversion of native rangelands to croplands potentially influences soil functions and quality. The aim of the current study was to assess soil quality (SQ) after rangeland conversion and degradation for more than 40 years using an indexing framework and integrated approach. Fifteen soil attributes were measured at two sampling depths (0–20 and 20–40 cm) of paired native undisturbed and adjacent cultivated rangelands at three rangeland sites. The soil organic carbon (OC), electrical conductivity (EC) and arylsulphatase (ARY) activity were found to be the key indicators of the minimum data set and these indicators greatly affected the computed soil quality index (SQI), particularly in the soil surface. The contribution of OC, EC and ARY to the overall SQI was 77, 13 and 10%, respectively. Although rangeland conversion reduced other soil attributes (including aggregate stability, available water capacity, cation exchange capacity, microbial biomass, microbial activity and the activities of urease and invertase enzymes), in particular at the 0–20 cm depth, these variables did not contribute to the estimated SQI values because of their high correlation with OC contents (i.e., strong interdependency). Cultivated rangelands were characterized by a low soil OC content, EC and ARY activity, and consequently a low SQI. A significant decline in SQI value (29–47%) was observed as a result of rangeland conversion to croplands, depending on soil depth considered and scoring function used to compute the SQI. Overall, converting native rangelands to croplands decreased SQ to 52–64% of their potential capacity using a non-linear scoring method. In summary, soil OC, EC and ARY are the most important indicators, which can be used to monitor and asses the degradation of rangeland SQ after conversion to croplands in these arid and semiarid upland environments. This finding is of especial importance because the assessment of SQ allows the successful and straightforward discrimination between rangeland and cropland ecosystems or to quantify land use conversion effects on SQ. It is concluded that the rate of soil changes can be assessed and compared more accurately in the studies of land use conversions in native rangeland ecosystems using the current indexing framework due to its simplicity and quantitative flexibility.  相似文献   

2.
Soil microbiological and chemical aspects were evaluated to determine the effects of conservation tillage and crop rotation on soil fertility over a 16-year period. A field trial was established to compare two cropping systems (continuous soybean and maize/soybean, soybean/maize rotation). In addition, maize (Zea mays L.) and soybean (Glycine max L., Merr) were grown in two different tillage systems: no tillage and reduced tillage. Soil populations of Trichoderma spp., Gliocladium spp. and total fungi were more abundant when maize or soybean were under conservation tillage and in the maize/soybean and soybean/maize rotation, than in continuous soybean. Furthermore, higher levels of microbial respiration and fluorescein diacetate hydrolysis (FDA), were recorded under no tillage systems. However, soil counts of Actinomycetes and Pythium spp., and Pythium diversity together with soil microbial biomass were not affected by the field treatments. To establish a correlation with soil biological factors, soil chemical parameters, such as pH, organic matter content, total N, electrical conductivity, N–NO3 and P were also quantified, most of the correlations being significantly positive. Under no tillage there was a clear increase of the amount of crop residues and the C and N soil content due to the presence of residues. Also the distribution of crop residues in surface soil due to zero tillage and the quality of these residues, depending on the crop rotation employed, improved on soil biological and chemical characteristics. Crop yield was also enhanced by zero tillage through the management of residues. Although yield values were not directly associated with the development of microorganisms, both yield and microorganisms were influenced by crop management. These results suggest that measuring soil properties over a long period helps to define effective management strategies in order to preserve soil conditions.  相似文献   

3.
Indicating soil quality usually requires many soil properties of which the measurements are time consuming. Therefore, it is desirable to developing simple and effective indices for reflecting soil quality based on soil properties that can be readily obtained. The soil physical quality index, S-index, derived from the slope at the inflection point of the water retention curve (particularly the Van-Genuchten equation), is a comprehensive index for indicating soil properties. By comparing the S-index with a widely used soil quality index (SQI), this study used 298 samples to determine soil chemical and physical properties for calculating SQI, and found that the correlation coefficient between the S-index and SQI was 0.88, indicating that the S-index can represent soil quality well. An artificial neural network (ANN) model and a linear regression (LR) model were proposed for estimating S-index. Results showed that the ANN model was better than LR model in estimating S-index. Particularly, the ANN model with the soil bulk density and soil organic carbon (scenario A1) as inputs, had the highest R2 of 0.807, while the LR model get the highest R2 (predicted v.s. observed) of 0.75 with the combination of soil organic carbon, soil bulk density, total nitrogen and available nitrogen. This study is helpful for extending the applications of S-index.  相似文献   

4.
Soil labile C and N fractions can change rapidly in response to management practices compared to non-labile fractions. High variability in soil properties in the field, however, results in nonresponse to management practices on these parameters. We evaluated the effects of residue placement (surface application [or simulated no-tillage] and incorporation into the soil [or simulated conventional tillage]) and crop types (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow) on crop yields and soil C and N fractions at the 0–20 cm depth within a crop growing season in the greenhouse and the field. Soil C and N fractions were soil organic C (SOC), total N (STN), particulate organic C and N (POC and PON), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), NH4-N, and NO3-N concentrations. Yields of both wheat and pea varied with residue placement in the greenhouse as well as in the field. In the greenhouse, SOC, PCM, STN, MBN, and NH4-N concentrations were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow. In the field, MBN and NH4-N concentrations were greater in no-tillage than conventional tillage, but the trend reversed for NO3-N. The PNM was greater under pea or fallow than wheat in the greenhouse and the field. Average SOC, POC, MBC, PON, PNM, MBN, and NO3-N concentrations across treatments were higher, but STN, PCM and NH4-N concentrations were lower in the greenhouse than the field. The coefficient of variation for soil parameters ranged from 2.6 to 15.9% in the greenhouse and 8.0 to 36.7% in the field. Although crop yields varied, most soil C and N fractions were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow in the greenhouse than the field within a crop growing season. Short-term management effect on soil C and N fractions were readily obtained with reduced variability under controlled soil and environmental conditions in the greenhouse compared to the field. Changes occurred more in soil labile than non-labile C and N fractions in the greenhouse than the field.  相似文献   

5.
长期不同耕作措施对土壤团聚体特征及微生物多样性的影响   总被引:12,自引:0,他引:12  
以豫西丘陵地区15年的保护性耕作试验为平台,研究了不同耕作措施对土壤水稳性团聚体分布及稳定性和土壤细菌、古菌及真菌多样性的影响.结果表明: 与传统耕作相比,免耕、深松覆盖和小麦-花生两茬耕作处理增加了>2000 μm粒级团聚体的相对含量,减少了<53 μm粒级团聚体的相对含量;显著提高了土壤团聚体平均质量直径(MWD),提高幅度分别为18.0%、12.2%和50.4%.免耕、深松覆盖和两茬耕作处理均可提高细菌、古菌和真菌的Shannon指数(H),细菌分别提高0.3%、0.3%和0.6%,古菌分别提高20.2%、40.5%和49.1%,真菌分别提高23.7%、19.5%和25.8%.土壤细菌和古菌的H指数与大团聚体含量(R0.25)和MWD显著相关,而真菌的H指数与R0.25和MWD相关性不显著.综上,采用免耕、深松结合小麦秸秆覆盖以及小麦-花生轮作等措施均可改善土壤团聚体状况,提高土壤微生物多样性指数.
  相似文献   

6.
《农业工程》2022,42(4):312-321
Rice-based production systems are critical to Nigeria's food security, but their effectiveness has decreased as soil quality deteriorates. A study was conducted on farmers' fields in Kebbi state, Nigeria to assess the long-term effects of cropping systems (rice mono-cropping (RR), rice-cowpea (RC), and rice-onion (RO)) and tillage (conventional tillage (CT) and minimum tillage (MT)) combinations on soil quality indices (SQI). The treatments were RR-CT (T1), RR-MT (T2), RC-CT (T3), RC-MT (T4), RO-CT (T5) and RO-MT (T6). Twelve soil properties that responded to management practices were measured as an unscreened total data set (TDS), and principal component analysis was performed to obtain a minimum data set (MDS). On the TDS and MDS, four SQIs were then calculated using both linear and non-linear scoring functions. Results showed that all the twelve properties varied significantly among the treatments. Treatment 3 had the lowest total nitrogen (TN) (0.31 g/kg) and the highest (0.84 g/kg), was T2. RR system with MT (T2) showed 98, 35, 95 and 138% increase in organic carbon (OC), microbial biomass C (Cmic) and N, and cation exchange capacity (CEC), respectively when compared with T3. Treatment 2 recorded the lowest bulk density (BD) (1.16 Mg/m3) and penetration resistance (0.84 MPa) after 3 years of cropping. Soil TN, CEC, OC, BD and Cmic highly influenced soil quality (SQ) explaining 85% of variation in the TDS and were selected as key indicators of SQ for the production system. All four SQIs differed significantly by treatment, with T2 showing the best strategy for sustaining the highest SQI. Equivalent rice yield (kg/ha) was positively correlated with SQI (R2 = 0.44–0.90) and had a strong relationship with TN, BD and Cmic (R2 = 0.95). The study shows that the MT could counteract any detrimental effect of monocropping in a rice-based production system.  相似文献   

7.
The current cropping system of excessive tillage and stubble removal in the northwestern Loess Plateau of China is clearly unsustainable. A better understanding of tillage and stubble management on surface soil structure is vital for the development of effective soil conservation practices in the long term. Changes in surface soil structure and hydraulic properties were measured after 4 years of stubble management (stubble retained vs. stubble removed) under contrasting tillage practices (no-tillage vs. conventional tillage) in a silt loam soil (Los Orthic Entisol) in Dingxi, Gansu, the northwestern Loess Plateau, China. Our results indicated that after 4 years small but significant changes in soil properties were observed amongst the different tillage and stubble treatments. Surface soil (0–5 cm) under no-tillage with stubble retention had the highest water stability of macroaggregates (>250 μm), soil organic carbon (SOC) and saturated hydraulic conductivity. Significant correlation was found between water stable macro-aggregates and soil organic carbon content, indicating the importance of the latter on soil structural stability. The improvement in soil structure and stability was confirmed by higher soil hydraulic conductivity measurements. Consistently higher Ksat was detected in the no tillage with stubble retained soil compared to other treatments. Therefore, no-tillage with stubble retention practice is an effective management technique for improving physical quality of this fragile soil in the long term.  相似文献   

8.
机械化保护性耕作条件下土壤质量的数值化评价   总被引:7,自引:0,他引:7  
通过9年的长期田间定位试验研究了陕西关中平原中部冬小麦 夏玉米轮作条件下深松耕(ST)、旋耕(RT)、秸秆还(SR)、免耕(NTS)等保护性耕作措施及传统耕作(TT)对土壤理化性状和作物产量的影响,并采用主成分分析方法进行土壤质量的综合评价.结果表明:与传统耕作相比,保护性耕作模式提高了土壤肥力质量,改善了土壤物理环境条件;显著提高了土壤脲酶和碱性磷酸酶的活性;除秸秆覆盖免耕处理的玉米和小麦产量低于传统耕作外,其他保护性耕作措施均不同程度地提高了作物产量,其中小麦增产13%~28%,玉米增产3%~12%.与传统耕作相比,保护性耕作土壤质量指数提高了19.8%~44.0%.综合考虑经济效应和生态效益,隔年深松、秸秆粉碎联合旋耕作业以及秸秆覆盖联合深松作业不仅能增加作物产量还可改善土壤质量,可在研究区进行推广应用.  相似文献   

9.
耕作方式对紫色水稻土有机碳和微生物生物量碳的影响   总被引:10,自引:2,他引:8  
以位于西南大学的农业部紫色土生态环境重点野外科学观测试验站始于1990年的长期定位试验田为对象,研究了冬水田平作(DP)、水旱轮作(SH)、垄作免耕(LM)及垄作翻耕(LF)等4种耕作方式对紫色水稻土有机碳(SOC)和微生物生物量碳(SMBC)的影响。结果表明,4种耕作方式下SOC和SMBC均呈现出在土壤剖面垂直递减趋势,翻耕栽培下其降低较均匀,而免耕栽培下其富集在表层土壤中。同一土层不同耕作方式间SOC和SMBC的差异在表层最大,随着土壤深度的增加,各处理之间的差异逐渐减小。在0—60 cm剖面中,SOC含量依次为:LM(17.6 g/kg)>DP(13.9 g/kg)>LF(12.5 g/kg)>SH(11.3 g/kg),SOC储量也依次为:LM(158.52 Mg C/hm2)>DP(106.74 Mg C/hm2)>LF(93.11 Mg C/hm2)>SH(88.59 Mg C/hm2),而SMBC含量则依次为:LM(259 mg/kg)>SH(213 mg/kg)>LF(160 mg/kg)>DP(144 mg/kg)。与其它3种耕作方式比较,LM处理显著提高SOC含量和储量以及SMBC含量。对土壤微生物商(SMBC/SOC)进行分析发现,耕作方式对SOC和SMBC的影响程度并不一致。SMBC与SOC、全氮、全磷、全硫、碱解氮、有效磷均呈现极显著正相关(P<0.01),与有效硫呈显著正相关(P<0.05);表明SMBC可以作为表征紫色水稻土土壤肥力的敏感因子。  相似文献   

10.
Soil management practices can affect the population dynamics of soil microbial communities. Cultural practices can be adequately combined to benefit natural populations of microorganisms that may have a role in biological control (actinomycetes, Trichoderma spp., and Gliocladium spp.), thus contributing to the management of peanut fungal soilborne diseases in a sustainable manner within ecological boundaries. During six agricultural cycles, rhizosphere soil samples were taken from a field subjected to crop rotation (soybean, peanut, and maize), peanut being under two tillage systems (no till, reduced tillage) with the aim of quantifying populations of soil microorganisms. The incidence of diseases caused by soilborne fungi in peanut was determined at harvest. The highest amount of actinomycetes, Trichoderma spp., and Gliocladium spp. were recorded when maize was the preceding crop. Regarding tillage systems, the populations of the three groups of microorganisms were higher in peanut under no tillage than under reduced tillage. Under these conditions, the lowest incidence of peanut blight (Sclerotinia minor) and root rot (strains of Fusarium solani) was observed, suggesting a possible natural control of peanut soilborne pathogens. The quantification of actinomycetes, Trichoderma spp., and Gliocladium spp. was used as a tool to explore the impacts of different management systems on microbial groups that may be involved in the biological control of soilborne diseases, with the aim of combining those practices that improve native populations of possible beneficial microorganisms. This manipulation can provide sustainable management strategies in the control of soilborne diseases, avoiding the use of artificial inoculations of microorganisms, and reducing agrochemical application.  相似文献   

11.
土壤活性有机质及其与土壤质量的关系   总被引:88,自引:2,他引:86  
活性有机质是土壤的重要组成部分 ,主要包括溶解性有机碳、微生物生物量、轻组有机质。它在土壤中具有重要作用 :(1)可以表征土壤物质循环特征、评价土壤质量 ,可以作为土壤潜在生产力以及由土壤管理措施引起土壤有机质变化的早期指标 ;(2 )在养分周转中起重要作用 ,是植物的养分库 ,可以提供植物所需要的养分如氮、磷、硫等 ;(3)能稳定土壤结构 ,对维持团粒结构稳定性有重要作用。从土壤养分、土壤物理、化学性质方面讨论了活性有机质与土壤质量的关系。土壤中的溶解性有机碳、微生物生物量碳氮含量与土壤有机碳、全氮和碱解氮等物质的含量呈正相关。活性有机质受土壤质地、含水量、温度等因素影响 ,与土壤酸碱度、阳离子交换量等也有关。土壤微生物生物量碳和微生物量 C/有机碳比与土壤粘粒、粉粒含量呈正相关、与砂粒含量呈负相关  相似文献   

12.
东北黑土区耕作措施对地表节肢动物多样性的影响   总被引:1,自引:0,他引:1  
孙涛  陈强  张兴义 《昆虫学报》2014,57(1):74-80
【目的】调查不同耕作措施下东北黑土地表节肢动物群落类群多样性以及营养功能群结构, 有利于揭示地表节肢动物多样性对土地管理措施的响应。【方法】本研究于2012年7-9月在黑龙江海伦中国科学院海伦农田生态系统国家野外科学观测研究站采用陷阱法对东北典型黑土区免耕、 少耕、 平翻、 旋耕和组合5种耕作措施长期定位试验区的地表节肢动物群落组成、 类群多样性以及功能群结构进行调查, 计算各处理地表节肢动物类群相对多度、 类群丰富度、 Shannon Wiener多样性指数、 Pielou均匀度指数、 Simpson优势度指数、 Cody指数和Srensen指数。【结果】本次调查共收集黑土农田地表节肢动物个体数为2 942, 隶属7目18科。免耕样地收集节肢动物15科, 占所有类群83.34%; 少耕和组合样地均为11科, 占61.12%。所有耕作措施下鞘翅目和蜘蛛目类群相对多度最高, 步甲科为黑土农田优势地表节肢动物类群。免耕样地节肢动物类群丰富度和多样性指数最高, 少耕样地最低。除旋耕样地外, 其他耕作样地地表节肢动物功能群均以捕食性为主。群落相似性指数分析表明, 不同耕作措施间群落相似性不同, 免耕与组合之间相似性较高, 而平翻与组合之间较低。【结论】步甲科是黑土农田地表节肢动物群落中的优势类群。不同耕作措施影响近地表土壤以及植被微生境, 进而影响地表节肢动物群落组成、 数量和营养功能群。免耕样地具有较高节肢动物类群丰富度和捕食性动物类群, 有利于维持黑土农田地表节肢动物多样性。  相似文献   

13.
Maize (Zea mays L.) is an important grains cereal crop. Lots of farmers using tillage and mulching practices influence the final yield, to maintain up with the growing demand for food, fuel and feed. Field experiments were conducted to investigate the effects of tillage practices (i.e. conventional tillage CT, reduced tillage RT, deep tillage DT) and wheat straw mulching (i.e. no mulch and wheat straw mulch of 4, 8 and 12 Mg ha−1, SM0, SM1, SM2 and SM3 respectively) on the growth, yield and yield components of maize and some of soil physical properties. The results showed that compared with RT, DT and CT decreased soil bulk density, as well as led to increase soil water content. Application of mulch treatments increased soil water content. DT and CT have been associated with greater plant height, yield components, grain and biomass yield than RT treatment. Plant height, yield components, grain and biomass yield as well as soil water content increased following mulching treatments. Mulching treatment of SM2 had the largest positive effects on maize yield. DT and CT that have potential to break the compacted zone in soil leading to a better soil environment and crop yield. The application of wheat straw mulch could be an efficient soil management practice for corn production in arid subtropical climate region.  相似文献   

14.
Crop growth and yield are the result of the efficiency of the chosen agricultural management system within the boundaries of the agro-ecological environment. Linking spatial variability in crop performance to differences in soil attributes could identify the limiting factors driving the system, since patterns of crop performance will follow the spatial variability of the underlying limiting soil attributes. The Greenseeker handheld NDVI sensor was used to determine the within-plot spatial variability of crop performance in the different management treatments of a long-term (started 1991) tillage and residue management trial. Soil quality was measured spatially in the same plots. Under zero tillage with residue removal, soil quality and crop performance followed micro-topography with higher values where elevation was lower. Under zero tillage with residue retention soil quality was high throughout the field, ensuring uniform crop growth and under conventional tillage, soil quality was intermediate. Crop performance followed the same pattern as soil moisture and the related attributes infiltration, soil structure and organic matter. Thus soil moisture is the main limiting factor of the system and it is essential for the sustainability of any management practice developed for the subtropical highlands that soil water capture and storage are optimal. Zero tillage with residue retention is therefore the practice that will result in the most sustainable management and the most stable yields for this target area.  相似文献   

15.
In order to evaluate soil functions of contemporary agricultural management practices, the adjustment of microbial biomass and C and N mineralisation capacities was monitored during 9 years following the implementation of conventional and reduced tillage, and mineral N and pig slurry fertilisation systems. Soil microbial biomass content and microbial activities decreased continuously from initial values. The decrease was slowed by slurry application, compared to either no or mineral N fertilisation, and both slurry and mineral N application stimulated soil microbial activities in the long-term. There were no significant differences in microbiological characteristics between conventional and reduced tillage for the 0 to 30 cm soil depth but microbial biomass and activity were highest from 0 to 15 cm depth under reduced tillage. Changes in several microbial properties became evident when analysing the whole experiment of 9 years and the soil unit is also of importance as shown by higher microbial activity level in Anthrosols in comparison to Luvisols.  相似文献   

16.
耕作方式对潮土土壤团聚体微生物群落结构的影响   总被引:1,自引:0,他引:1  
为探究不同耕作方式对潮土土壤团聚体微生物群落结构和多样性的影响,采用磷脂脂肪酸(PLFA)法测定了土壤团聚体中微生物群落。试验设置4个耕作处理,分别为旋耕+秸秆还田(RT)、深耕+秸秆还田(DP)、深松+秸秆还田(SS)和免耕+秸秆还田(NT)。结果表明:与RT相比,DP处理显著提高了原状土壤和>5 mm粒级土壤团聚体中真菌PLFAs量和真菌/细菌,为真菌的繁殖提供了有利条件,有助于土壤有机质的贮存,提高了土壤生态系统的缓冲能力;提高了5~2 mm粒级土壤团聚体中细菌PLFAs量,降低了土壤革兰氏阳性菌/革兰氏阴性菌,改善了土壤营养状况;提高了<0.25 mm粒级土壤团聚体中微生物丰富度指数。总的来说,深耕+秸秆还田(DP)对土壤团聚体细菌和真菌生物量有一定的提高作用,并且在一定程度上改善了土壤团聚体微生物群落结构,有利于增加土壤固碳能力和保持土壤微生物多样性。冗余分析结果表明,土壤团聚体总PLFAs量、细菌、革兰氏阴性菌和放线菌PLFAs量与土壤有机碳相关性较强,革兰氏阳性菌PLFAs量与总氮相关性较强。各处理较大粒级土壤团聚体微生物群落主要受碳氮比、含水量、pH值和团聚体质量分数的影响,较小粒级土壤团聚体微生物群落则主要受土壤有机碳和总氮的影响。  相似文献   

17.
不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究   总被引:94,自引:8,他引:86  
以长期定位试验为基本材料,研究了不同耕作方式对土壤动物、微生物及酶活性的影响.结果表明,0~20cm土壤层内大、中、小型土壤动物垄作免耕为14700个·m^-22,冬水免耕为10450个·m^-22水旱轮作为7950个·m^-22常规平作为6275个·m^-22,垄作免耕处理土壤动物的数量是常规平作的2.34倍.土壤微生物数量和土壤微生物生物量氮因季节而异,总体上是春秋多而夏季少,土壤酶活性表现出表层高,底层低.土壤微生物数量、土壤微生物生物量氮及土壤酶活性不同处理间仍是垄作免耕>水旱轮作>冬水免耕>常规平作,表明垄作免耕有利于改善稻田土壤生态环境。有利于土壤肥力的提高。  相似文献   

18.
不同还田方式对砂质潮土理化性质及微生物的影响   总被引:8,自引:0,他引:8  
李培培  汪强  文倩  李慧  吴传发  熊伟东  韩燕来 《生态学报》2017,37(11):3665-3672
为探索不同物料还田方式对中低产田砂质潮土的改良效果,在黄淮海平原麦玉轮作区典型砂质潮土上进行了连续6季的田间小区试验,设置全量秸秆翻耕还田(TS),秸秆等碳量的生物炭(TB)及半量秸秆半量生物炭配合翻耕还田(TSB),全量秸秆免耕覆盖还田(NTS)和半量秸秆半量生物炭配合免耕覆盖还田(NTSB),共5种还田方式。结果表明,与常规秸秆翻耕还田(TS)相比,生物炭翻耕还田(TB)显著降低土壤容重,增加玉米各个生育期土壤水分和p H值,有机质含量提升了16.4%,但TB处理的土壤大团聚体降低了21.2%和微生物数量降低了16.1%;翻耕秸秆配合生物炭还田(TSB)除了显著降低了大团聚体数量,对其余理化及微生物指标的影响均不显著;免耕模式下的秸秆还田(NTS)和秸秆生物炭配施(NTSB)分别在玉米生长的喇叭口期和收获期显著增加了土壤水分含量、耕层土壤的微生物数量和有效降低砂质潮土分形维数,对容重和有机质含量有一定的改善,其中NTSB有机质含量提升了14.9%和微生物数量增加了53.7%,对砂质潮土改良效果更好。总体来说,短期内用等碳量的生物炭替代秸秆翻耕还田更多的表现为物理的掺混效应,虽能有效提升土壤有机质含量,但不能有效改善砂质潮土的物理结构及生物性质,一半秸秆用生物炭替代还田对该类土壤的理化及微生物指标的改良效果也不显著,而免耕条件下秸秆配合生物碳还田效果最佳,可为砂质潮土的改良提供新的途径和理论依据。  相似文献   

19.
旱地农田不同耕作系统的能量/碳平衡   总被引:5,自引:0,他引:5  
摘要:加强农田土壤保持耕作管理,科学认识和调控农田耕作系统能流碳流,提高农业生态系统固碳减排能力,对于减缓农业对全球温室效应的贡献具有重要意义。本研究以北方半湿润偏旱区山西寿阳旱作春玉米土壤保持耕作试验研究为基础,利用田间定位观测数据、辅助能投入参数,土壤呼吸田间原位测定,以及农业生态系统能量/碳平衡分析及碳循环过程模拟方法,综合分析和比较不同耕作(CT传统、RT少耕和NT免耕)系统能量/碳平衡及能-碳关联影响。与CT比较,采用RT和NT措施下工业能耗CO2-C损失降低约4%—12%(相当11—35 kg CO2-C?hm-2?a-1)。在RT和NT系统下耗能系数可降低约6%—10%,能量生产效率可提高约7%—12%。2006—2007年由田间原位测定土壤呼吸CO2-C释放通量估算,在玉米休闲期(尤其是秋耕处理后),NT条件下土壤呼吸速率一般为最低(NT NT(2005380)>CT(1987375)。不同耕作下的玉米籽粒产量与生育期土壤呼吸通量趋势基本吻合,如2006-2007年玉米产量(kg?hm-2?a-1)平均为,RT(5614268)>NT(5533564)>CT(5487278)。玉米籽粒产量与生育期土壤呼吸通量之间呈密切相关(R2=0.88)。本研究结果得出,RT和NT对农田耕作系统的影响呈碳汇效应,且一般为NT >RT;而CT处理表现为碳源。RT和NT通过增加土壤碳投入是维持和提高土壤有机碳的有效途径。  相似文献   

20.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号