首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Jingmei Zhang  Jiaxi Liu  Zukeng Chen  Jinxing Lin   《Flora》2007,202(7):581-588
The calcium inhibitors A23187, EGTA and La3+ inhibit pollen grain germination and growth of pollen tubes of Lilium davidii var. unicolor at different concentrations. Treatment with 10−4 or 10−5 M ionophores A23187 reduced germination rate and resulted in distortion of pollen tube. Addition of 2 or 10 mM of the chelator EGTA disturbed the direction of pollen tube growth and extended the diameter of pollen tube as observed by light and confocal microscopy. The Ca2+-channel blocker lanthanum chloride (La3+) restrained germination or markedly caused transformation of pollen tube. Furthermore, all treatments led to disappearance of any calcium gradient. Calcium distribution in pollen grain and pollen tube was altered as shown by confocal microscopy for each treatment. This indicates that the inhibitors influence pollen development by affecting the calcium gradient which may play a critical role in germination and tube growth. Fourier transform infrared (FTIR) spectra indicated slight increases in contents of amide I and a substantial decrease in the content of aliphatic esters and saturated esters in treated pollen tubes compared with normal pollen tubes. The FTIR analysis confirmed that EGTA and La3+ weakened the accumulation of ester in pollen tubes, which may be associated with an increased content of amide I.  相似文献   

2.
应用荧光显微技术、激光共聚焦扫描显微技术、单克隆抗体免疫荧光标记技术以及傅里叶变换显微红外光谱分析(FTIR)等手段,研究了内钙拮抗剂TMB-8对白皮松花粉管胞内Ca2+分布、花粉管生长以及细胞肇构建等的影响.结果表明,白皮松花粉管经TMB-8处理后,胞内的Ca2+浓度下降,花粉管内典型的Ca2+浓度梯度消失,花粉萌发...  相似文献   

3.
H. -D. Reiss  W. Herth 《Protoplasma》1978,97(4):373-377
Summary Epifluorescence microscopy with chlorotetracycline (CTC) fluorescence was used to visualize the Ca2+ distribution in germinating pollen grains and growing pollen tubes ofLilium longiflorum. The intensity of the fluorescence shows a gradient with the highest fluorescence at the growing tip. Added external Ca2+ influences the intensity of the gradient in germinating grains. Ionophore A 23187 treated pollen tubes do not show the fluorescence gradient with CTC. These results are interpreted as evidence for the role of a Ca2+ gradient in pollen tube tip growth.  相似文献   

4.
W. Herth 《Protoplasma》1978,96(3-4):275-282
Summary The effects of the cationophore A 23187 on growing pollen tubes ofLilium longiflorum and on pollen germination were testedin vitro, and measured light microscopically. The ionophore is a very potent inhibitor of pollen tube growth: ionophore contentrations down to 10–7 M stop tip growth. Cytoplasmic streaming is less sensitive: Only with added external Ca2+ and higher concentrations of the ionophore the cytoplasmic streaming is stopped. Pollen germination is less sensitive to ionophore than pollen tube growth at later stages. The ionophore inhibition is partially reversible in a medium containing no added external Ca2+, but is not reversible in a Ca2+-enriched medium. EDTA addition to the medium prevents pollen germination and growth totally. It is hypothesized that the pollen ofLilium longiflorum needs Ca2+ to sustain oriented exocytosis at the pollen tube tip. The ionophore A 23187 seems to interfere with the electrical pulse/Ca2+-orientation mechanism of exocytosis by equilibration of the Ca2+-gradient.  相似文献   

5.
Summary The involvement of exogenous calcium ions in the regulation of pollen tube formation has been investigated in Haemanthus albiflos L. and Oenothera biennis L. by following the changes that occur in pollen germination, tube growth, and 45+Ca2+ uptake and distribution upon application of Verapamil (an inhibitor of calcium channels), lanthanum (a Ca2+ substitute), and ruthenium red (believed to raise the intracellular calcium level). It was found that exogenous Ca2+ takes part in the formation of the calcium gradient present in germinating pollen grains and growing pollen tubes. Ca2+ ions enter the cells through calcium channels. Raising or reducing 45Ca2+ uptake causes disturbances in the germination of the pollen grains and in the growth of the pollen tubes.  相似文献   

6.
Summary The wall ofPinus sylvestris pollen and pollen tubes was studied by electron microscopy after both rapid-freeze fixation and freeze-substitution (RF-FS) and chemical fixation. Fluorescent probes and antibodies (JIM7 and JIM5) were used to study the distribution of esterified pectin, acidic pectin and callose. The wall texture was studied on shadow-casted whole mounts of pollen tubes after extraction of the wall matrix. The results were compared to current data of angiosperms. TheP. sylvestris pollen wall consists of a sculptured and a nonsculptured exine. The intine consists of a striated outer layer, that stretches partly over the pollen tube wall at the germination side, and a striated inner layer, which is continuous with the pollen tube wall and is likely to be partly deposited after germination. Variable amounts of callose are present in the entire intine. No esterified pectin is detected in the intine and acidic pectin is present in the outer intine layer only. The wall of the antheridial cell contains callose, but no pectin is detectable. The wall between antheridial and tube cell contains numerous plasmodesmata and is bordered by coated pits, indicating intensive communication with the tube cell. Callose and esterified pectin are present in the tip and the younger parts of the pollen tubes, but both ultimately disappear from the tube. Sometimes traces in the form of bands remain present. No acidic pectin is detected in either tip or tube. The wall of the pollen tube tip has a homogenous appearance, but gradually attains a fibrillar character at aging, perhaps because of the disappearance of callose and pectin. No secondary wall formation or callose lining can be seen wilh the electron microscope. The densily of the cellulose microfibrils (CMF) is much lower in the tip than in the tube. Both show CMF in all but axial and nontransverse orientations. In conclusion,P. sylvestris and angiosperm pollen tubes share the presence of esterified pectin in the tip, the oblique orientations of the CMF, and the gradual differentiation of the pollen tube wall, indicating a possible relation to tip growth. The presence of acidic pectin and the deposition of a secondary-wall or callose layer in angiosperms but not inP. sylvestris indicales that these characteristics are not related to tip growth, but probably represent adaptations to the fast and intrastylar growth of angiosperms.Abbreviations CMF cellulose microfibrils - II inner intine - NE nonsculptured exine - OI outer intine - RF-FS rapid-freeze fixation freeze-substitution - SE sculptured exine - SER smooth endoplasmic reliculum - SV secretory vesicles  相似文献   

7.
A role for cytosolic free Ca2+ (Ca2+i) in the regulation of growth of Papaver rhoeas pollen tubes during the self-incompatibility response has recently been demonstrated [Franklin-Tong et al. Plant J. 4:163–177 (1993); Franklin-Tong et al. Plant J. 8:299–307 (1995); Franklin-Tong et al. submitted to Plant J.]. We have investigated the possibility that Ca2+i is more generally involved in the regulation of pollen tube growth using confocal laser scanning microscopy (CLSM). Data obtained using Ca2+ imaging, in conjunction with photolytic release of caged inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], point to a central role of the phosphoinositide signal transduction pathway in the control of Ca2+ fluxes and control of pollen tube growth. These experiments further revealed that increases in cytosolic levels of Ins(1,4,5)P3 resulted in the formation of distinct Ca2+ waves. Experiments using the pharmacological agents heparin, neomycin and mastoparan further indicated that Ca2+ waves are propagated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release rather than by simple diffusion or by “classic” Ca2+-induced Ca2+ release mechanisms. We also have data which suggest that Ca2+ waves and oscillations may be induced by photolytic release of caged Ca2+. Ratio-imaging has enabled us to identify an apical oscillating Ca2+ gradient in growing pollen tubes, which may regulate normal pollen tube growth. We also present evidence for the involvement of Ca2+ waves in mediating the self-incompatibility response. Our data suggest that changes in Ca2+i and alterations in growth rate/patterns are likely to be closely correlated and may be causally linked to events such as Ca2+-induced, or Ins(1,4,5)P3-induced wave formation and apical Ca2+ oscillations.Presented at the 1997 SEB Annual Meeting: Interactive MultiMedia Biology - Experimental Biology Online Symposium, Canterbury, 7-11 April  相似文献   

8.
The effects of ruthenium red, lanthanum, fluorescein isothiocyanate and trifluoperazine, all antagonists of Ca2+ function in cells, have been studied in growing pollen tubes of Tradescantia virginiana. All four drugs inhibit pollen-tube growth but bring about different ultrastructural changes at the growing tips and within the cytoplasm. The results strongly support the hypothesis that Ca2+ plays a vital role in the mechanism of pollen-tube tip growth. The effect of ruthenium red provides evidence that sequestration of Ca2+ by mitochondria critically adjusts the concentration of these ions at tube tips. Fluorescein isothiocyanate appears to be a potent inhibitor of vesicle fusion at the plasma membrane, with vesicles accumulating in the tip at rates equivalent to those determined previously for their production. Both vesicle fusion and tip extension are regulated by Ca2+ but appear to be independently controlled processes.  相似文献   

9.
The effects of the broad-range cationophore X-537A on pollen tubes of Lilium longiflorum were investigated, using both light and electron microscopy. Pollen tube growth is completely inhibited within 30 min after the application of 5·10-5 M ionophore X-537A; cytoplasmic streaming is stopped only after 60 min of ionophore treatment. Ultrastructurally, X-537A effects are a vacuolation of Golgi cisternae and a general vacuolation. The wall is thickened at the very tip. Coated vesicles and coated regions are enriched close to and at the plasma membrane. The results indicate that pollen tube tip growth needs a specific ion distribution.Abbreviations CTC chlorotetracycline - DMSO dimethylsulfoxide  相似文献   

10.
Tip-growing organisms maintain an apparently essential tip-high gradient of cytoplasmic Ca2+. In the oomycete Saprolegnia ferax, in pollen tubes and root hairs, the gradient is produced by a tip-localized Ca2+ influx from the external medium. Such a gradient is normally dispensable for Neurospora crassa hyphae, which may maintain their Ca2+ gradient by some form of internal recycling. We localized Ca2+ in N. crassa hyphae at the ultrastructural level using two techniques (a) electron spectroscopic imaging of freeze-dried hyphae and (b) pyroantimoniate precipitation. The results of both methods support the presence of Ca2+ in the wall vesicles and Golgi body equivalents, providing a plausible mechanism for the generation and maintenance of the gradient by Ca2+ shuttling in vesicles to the apex, without exogenous Ca2+ influx. Ca2+ sequestration into the vesicles seems to be dependent on Ca2+–ATPases since cyclopiazonic acid, a specific inhibitor of Ca2+ pumps, eliminated all Ca2+ deposits from the vesicles of N. crassa.  相似文献   

11.
In lily, adhesion of the pollen tube to the transmitting-tract epidermal cells (TTEs) is purported to facilitate the effective movement of the tube cell to the ovary. In this study, we examine the components of the extracellular matrices (ECMs) of the lily pollen tubes and TTEs that may be involved in this adhesion event. Several monoclonal antibodies to plant cell wall components such as esterified pectins, unesterified pectins, and arabinogalactan-proteins (AGPs) were used to localize these molecules in the lily pollen tube and style at both light microscope (LM) and transmission electron microscope (TEM) levels. In addition, (-d-Glc)3 Yariv reagent which binds to AGPs was used to detect AGPs in the pollen tube and style. At the LM level, unesterified pectins were localized to the entire wall in in-vivo- and in-vitro-grown pollen tubes as well as to the surface of the stylar TTEs. Esterified pectins occurred at the tube tip region (with some differences in extent in in-vivo versus in-vitro tubes) and were evenly distributed in the entire style. At the TEM level, esterified pectins were detected inside pollen tube cell vesicles and unesterified pectins were localized to the pollen tube wall. The in-vivo pollen tubes adhere to each other and can be separated by pectinase treatment. At the LM level, AGP localization occurred in the tube tip of both in-vivo- and in-vitro-grown pollen tubes and, in the case of one AGP probe, on the surface of the TTEs. Another AGP probe localized to every cell of the style except the surface of the TTE. At the TEM level, AGPs were mainly found on the plasma membrane and vesicle membranes of in-vivo-grown pollen tubes as well as on the TTE surface, with some localization to the adhesion zone between pollen tubes and style. (-d-Glc)3 Yariv reagent bound to the in-vitro-grown pollen tube tip and significantly reduced the growth of both in-vitro- and in-vivo-grown pollen tubes. This led to abnormal expansion of the tube tip and random deposition of callose. These effects could be overcome by removal of (-d-Glc)3 Yariv reagent which resulted in new tube tip growth zones emerging from the flanks of the arrested tube tip. The possible roles of pectins and AGPs in adhesion during pollination and pollen tube growth are discussed.Abbreviations AGP arabinogalactan-protein - ECM extracellular matrix - Glc glucose - MAbs monoclonal antibodies - LM light microscope - Man mannose - TEM transmission electron microscope - TTE transmitting tract epidermal cell The authors thank Michael Georgiady for assistance with the preparation of material for the TEM immunolocalization, Diana Dang for her help with the pectinase experiment, and Kathleen Eckard for assistance in all aspects of this study. The MAbs were the generous gifts of Dr. J.P. Knox. G.Y. Jauh thanks Dr. E.A. Nothnagel for assistance in making the Yariv reagent and for the gift of the control (-d-Man)3 Yariv reagent. This work is in partial fulfilment of the dissertation requirements for a PhD degree in Botany and Plant Sciences for G.Y. Jauh at the University of California, Riverside. This work was supported by National Science Foundation grant 91-18554 and an R.E.U. grant to E.M.L.  相似文献   

12.
  • Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated.
  • Apple pollen grains were cultured under different concentrations of B. Scanning ion‐selective electrode technique, fluorescence labelling and Fourier‐transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+]cyt), actin filaments and cell wall components of pollen tubes.
  • B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring‐like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls.
  • B appears to have an active role in pollen tube growth by affecting [Ca2+]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
  相似文献   

13.
Summary Cytochemical detection of ATPase activity in the pollen grain (PG) and pollen tube (PT) of Agapanthus umbelatus showed that the enzymes concerned presented specific patterns of membrane distribution according to their ionic dependencies and to the timecourse of germination and tube growth. In the pollen tubes Ca2+-ATPases were mainly localized in mitochondria and ER membranes, while Mg2+-ATPases were found especially in the tonoplast and in the membrane of the P-particles. K+-ATPases showed a high activity at the plasma membrane. In the pollen grain similar patterns of ATPase activity were observed. The highest activity of all three types was observed at the plasma membrane of the grain and at the intine and inner exine layers of the cell wall. The activity observed in the pollen grain cell wall decreased with germination time. In vivo germination studies in the presence of specific inhibitors of the ATPases showed patterns of inhibition that could be correlated with the corresponding ATPase putative role.The results are discussed in terms of the ultrastructural organization of the PG and PT, especially those correlated with (1) formation and maintenance of ionic gradients throughout the PT, (2) polarized growth and (3) hydrodynamics of PT elongation.Abbreviations PT Pollen tube - PG pollen grain - PTW pollentube wall - PGW pollen-grain wall - ER endoplasmic reticulum - NEM N-ethylmaleimide  相似文献   

14.
T. Kohno  T. Shimmen 《Protoplasma》1987,141(2-3):177-179
Summary To control the intracellular free Ca2+ concentration from the cell exterior, pollen tubes ofLilium longiflorum were treated with a Ca2+ ionophore, A23187. Cytoplasmic streaming was inhibited when the free Ca2+ concentration of the external medium ([Ca2+]) was raised to 5×10–6 M or higher. At [Ca2+] below 1×10–6 M, the rhodamine-phalloidin stained actin filaments appeared straight and thin. However, at [Ca2+] which inhibited cytoplasmic streaming, the actin filaments appeared fragmented. In pollen tubes, Ca2+ regulation of cytoplasmic streaming may be linked not only to myosin (Shimmen 1987) but also to actin.Abbreviations ATP adenosine-5-triphosphoric acid - [Ca2+] concentration of free Ca2+ - EGTA ethyleneglycol-bis-(-aminoethylether)N,N,N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - Rh-ph rhodamine-conjugated phalloidin  相似文献   

15.
Summary In an attempt to correlate structural effects with the known dissipation of the tip-focused Ca2+ gradient caused by caffeine, we have examined the ultrastructure of caffeine-treated lily pollen tubes prepared by rapid freeze fixation and freeze substitution. We show that treatment with caffeine results in a rapid rearrangement of secretory vesicles at the pollen tube tip; the normal cone-shaped array of vesicles is rapidly dispersed. In addition, microfilament bundles appear in the tip region, where they had previously been excluded. Delocalized vesicle fusion continues in the presence of caffeine but tube extension ceases. Removal of caffeine from the growth medium initially causes tip swelling, delocalized vesicle fusion and presence of microfilaments well into the tip before normal structure and growth resume, concurrent with the previously reported return to a normal Ca2+ gradient.Abbreviations ER endoplasmic reticulum - MES 2-[N-morpholino] ethanesulfonic acid - MFs microfilaments  相似文献   

16.
Summary In vitro penetration of the micropyle of freshly isolatedGasteria verrucosa ovules by pollen tube was monitored on agar medium. 40–60% of the micropyles were penetrated, comparable with in vivo penetration percentages. When germinated on agar,Gasteria pollen tube elongation lasts for up to 8 h while plasma streaming continues for about 20–24 h. The generative cell divides between 7 and 20 h after germination, and after 20 h the pollen tube arrives at one of the synergids. The sperm cells arrive after 22 h. The whole process takes more time in vitro than in vivo. In fast growing pollen tubes, a pulsed telescope-like growth pattern of tube elongation is observed. The formation of pollen tube wall material precedes tube elongation and probably prevents regular enlargement of the pollen tube tip-zone. Rapid stretching of the new pollen tube wall material follows, probably due to gradually increased osmotic pressure and the use of lateral wall material below the tip. The stretching ceases when the supplies of plasma membrane and excretable wall material are exhausted. Multiple pollen tube penetration of the micropyle occurs in vitro as it does in vivo. Most pollen tube growth ceases within the micropyle but, if it continues, the pollen tubes curl. Inside the micropyle the pollen tube shows haustorial growth. At the ultrastructural level, the wall thickening of in vitro pollen tubes is quite similar to that in vivo. Before transfer of pollen tube cytoplasm a small tube penetrates one of the synergids. Sperm nuclei with condensed chromatin are observed in the pollen tube and the synergid. In vivo prometaphase nuclei are found in the most chalazal part of a synergid, against the egg cell nucleus and nucleus of the central cell at a later stage. Using media forLilium ovule culture,Gasteria ovules were kept alive for at least 6 weeks. Swelling of the ovule depends on pollen tube penetration. The conditions for fertilization to occur after in vitro ovular pollination seem to be present.  相似文献   

17.
Reactive oxygen species (ROS) produced by NAD(P)H oxidases play a central role in plant stress responses and development. To better understand the function of NAD(P)H oxidases in plant development, we characterized the Arabidopsis thaliana NAD(P)H oxidases RBOHH and RBOHJ. Both proteins were specifically expressed in pollen and dynamically targeted to distinct and overlapping plasma membrane domains at the pollen tube tip. Functional loss of RBOHH and RBOHJ in homozygous double mutants resulted in reduced fertility. Analyses of pollen tube growth revealed remarkable differences in growth dynamics between Col–0 and rbohh–1 rbohj–2 pollen tubes. Growth rate oscillations of rbohh–1 rbohj–2 pollen tubes showed strong fluctuations in amplitude and frequency, ultimately leading to pollen tube collapse. Prior to disintegration, rbohh–1 rbohj–2 pollen tubes exhibit high‐frequency growth oscillations, with significantly elevated growth rates, suggesting that an increase in the rate of cell‐wall exocytosis precedes pollen tube collapse. Time‐lapse imaging of exocytic dynamics revealed that NAD(P)H oxidases slow down pollen tube growth to coordinate the rate of cell expansion with the rate of exocytosis, thereby dampening the amplitude of intrinsic growth oscillations. Using the Ca2+ reporter Yellow Cameleon 3.6, we demonstrate that high‐amplitude growth rate oscillations in rbohh–1 rbohj–2 pollen tubes are correlated with growth‐dependent Ca2+ bursts. Electrophysiological experiments involving double mutant pollen tubes and pharmacological treatments also showed that ROS influence K+ homeostasis. Our results indicate that, by limiting pollen tube growth, ROS produced by NAD(P)H oxidases modulate the amplitude and frequency of pollen tube growth rate oscillations.  相似文献   

18.
The data presented here describe ratio-imaging of in intracellular free calcium (Ca2+i) during the self-incompatibility (SI) response in pollen. Use of the ratiometric indicator, fura-2 dextran, in pollen tubes of Papaver rhoeas has provided new, detailed information about the spatial-temporal alterations in Ca2+i, and has permitted calibration of alterations in the concentration of intracellular free calcium ([Ca2+]i) in the SI response. Ratio images demonstrate that, like other pollen tubes, normally growing P. rhoeas pollen tubes exhibit a tip-focused gradient of Ca2+bfi, with levels reaching 1–2 μM at the extreme apex of the pollen tube. Non-growing pollen tubes did not exhibit this tip-focused gradient. Basal levels of Ca2+i in the shank of the pollen tube were fairly consistent and had a mean value of 210 nM, with low-level fluctuations +/? 50 nM observed. Challenge with incompatible S proteins resulted in S-specific, rapid and dramatic alterations in [Ca2+]i within a few seconds of challenge. Increases in [Ca2+]i were visualized in the subapical/shank regions of the pollen tube and alterations in [Ca2+]i in this region subsequently increased for several minutes, reaching> 1.5 μM. At the pollen tube tip, a diminution of the tip-focused gradient was observed, which following some fluctuation, was reduced to basal levels within ~1 min. Our data suggest that some of these alterations in [Ca2+]i might be interpreted as a calcium wave, as the changes are not global. Although the increases in [Ca2+]i in the subapical/shank region are very rapid, because tip [Ca2+]i oscillates during normal growth, it is difficult to ascertain whether the increases in the shank of the pollen tube precede the decreases in [Ca2+]i at the pollen tube tip.  相似文献   

19.
It is well established that the actin cytoskeleton is absolutely essential to pollen germination and tube growth. In this study we investigated the effects of cytochalasin B (CB), which affects actin polymerization by binding to the barbed end of actin filaments, on apple (Malus pumila Mill.) pollen tube growth. Results showed that CB altered the morphology of pollen tubes, which had a larger diameter than control tubes beside inhibiting pollen germination and tube growth. Meantime CB also caused an abnormal distribution of actin filaments in the shank of the treated pollen tubes. Fluo-3/AM labeling indicated that the gradient of cytosolic calcium ([Ca2+]c) in the pollen tube tip was abolished by exposure to CB, which induced a much stronger signal in the cytoplasm. Cellulose and callose distribution in the tube apex changed due to the CB treatment. Immunolabeling with different pectin and arabinogalactan protein (AGP) antibodies illustrated that CB induced an accumulation of pectins and AGPs in the tube cytoplasm and apex wall. The above results were further supported by Fourier-transform infrared (FTIR) analysis. The results suggest the disruption of actin can result in abnormal growth by disturbing the [Ca2+]c gradient and the distribution of cell wall components at the pollen tube apex.  相似文献   

20.
Ilse Foissner 《Protoplasma》1990,154(2-3):80-90
Summary The formation of wall appositions (plugs) by ionophore A 23187, CaCl2, LaCl3, and nifedipine was studied in mature internodal cells of characeaen algae. CaCl2 at concentrations above 10–2M induces thick fibrillar plugs without callose inNitella flexilis. InChara corallina andNitella flexilis ionophore A 23187 (1.25×10–5 to 5×10–5M) and LaCl3 (7.5×10–5 to 2.5×10–4M) cause flat appositions which contain callose and have a more granular structure. Plug formation by ionophore A 23187, CaCl2, and LaCl3 is pH-dependent and occurs beneath the alkaline regions of the cell. Nifedipine (10–4 to 10–5M) induces plugs inNitella flexilis after previous injury. These callose-containing wall appositions consist of a heterogeneous granular core which is covered by a fibrillar layer. The results of this work are compared with previous studies on wound wall formation and chlortetracycline (CTC)-induced plug formation which reveal that abundant coated vesicles occur only when a thick fibrillar wall layer is formed. Neither LaCl3 nor nifedipine inhibit the formation of CaCl2- or CTC-plugs. The unusual effects of these substances, which normally act as Ca2+ antagonists and therefore should prevent and not induce plug formation, are discussed. It is suggested that La3+ mimicks the effects of calcium and that nifedipine binding to the Ca2+ channels is altered in the alkaline regions of characean internodes and allows an influx of Ca2+.Abbreviations AFW artificial fresh water - CTC chlortetracycline - DCMU dichlorphenyldimethylurea - DMSO dimethylsulfoxide - EGTA ethyleneglycoltetraacetic acid - MES 2-(N-morpholino) ethanesulfonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - TAPS N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号