首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自然界的氮素以3种形态存在;分子氮,约占大气的78%;无机氮化物(氨氮和硝酸氮);有机氮化物(蛋白质、氨基酸等)。这3种形态的氮在微生物、植物和动物的协同作用下互相转化,构成氮的循环,如图所示:自然界氛的循环示意图在氮的循环中微生物起着重要作用,即固氮作用、氨化作用、硝化作用和反硝化作用。大气中的分子氮只有通过固氮作用转化为氨,才能被植物吸收利用,通过合成代谢,氮就会被固定到植物蛋白中,动物通过食用植物蛋白将氮固定到动物蛋白中。动植物的尸体或废物又被微生物分解而产生氨,这就是氨化作用。在有氧条件下,…  相似文献   

2.
应用~(15)N实验证明,作物对氮肥利用率一般为30—60%左右。在施入的氮肥中有相当一部份氮素通过土壤而损失掉,其损失途径除了NO_2~-琳失外,另一方面是经过反硝化作用以一氧化二氮(N_2O)和氮气(N_2)进入大气中。Mcelroy等认为,进入大气中的N_2O不断继续上升,在同温层和分子态臭氧(O_3)发生反应形成硝酸和原子态氧,大大地降低了臭氧层的臭氧浓度,使宇宙线能更多地透过并直接地危及大气层和生物圈,可能使人类皮肤癌发病率相应地上升。在自然界的氮循环中,反硝化过程产生的氮约占构成氮平衡总量的20—  相似文献   

3.
大气有机氮沉降研究进展   总被引:13,自引:5,他引:8  
郑利霞  刘学军  张福锁 《生态学报》2007,27(9):3828-3834
大气氮素沉降是全球氮素生物地球化学循环的一个重要部分,包括干?湿沉降两种,以无机态和有机态形式发生沉降。长期以来由于受研究方法的限制,国际上对大气氮素沉降的研究多集中在无机态氮的沉降上,忽视了对有机态氮形式发生的沉降,因而造成了人们对大气氮素沉降总量的低估。在全面总结国内外文献的基础上,综述了大气有机态氮沉降的研究进展,具体包括大气有机氮的来源、种类?雨水有机氮的测定方法?有机氮沉降对大气氮沉降总量(氮沉降总量=无机氮沉降 有机氮沉降)的贡献,以及有机氮沉降可能的生态效应等。最后,指出了今后我国大气有机氮沉降研究需要加强的主要方面。  相似文献   

4.
生物固氮     
生物固氮是指生物体将分子状态的N_2还原,生成其NH_3的酶促反应过程。NH_3等无机氮化合物是低等植物、某些浮游生物等的必需营养素。这些生物摄取无机氮化合物,使之转变成NH_3后,再合成本身所需要的蛋白质、核酸等。通常动物对无机氮的同化能力弱,主要靠摄取植物中的有机氮化合物来合成机体的蛋白质和核酸等。  相似文献   

5.
生物土壤结皮在干旱区氮素地球化学循环中具有重要作用,研究不同生物土壤结皮下不同形态氮素含量的变化,解析生物土壤结皮对土壤养分影响过程和范围,有助于进一步理解生物土壤结皮的生态功能。本研究以古尔班通古特沙漠藻-地衣混生结皮和藓类结皮两种生物土壤结皮为研究对象,以裸沙为对照,测定生物土壤结皮层和0—100 cm内8个土层全氮、无机氮、可溶性有机氮、游离态氨基酸氮、微生物生物量氮等氮库含量,和土壤脲酶、硝酸盐还原态酶、亮氨酸氨基肽酶等土壤胞外酶活性。结果表明:1)结皮层各形态氮素含量和各土壤酶活性显著高于其下层土壤,结皮层和结皮下各层土壤氮库整体上表现为藓类结皮>藻-地衣混生结皮>裸沙;土壤氮库各形态氮素含量和土壤酶活性在垂直分布上均呈现先显著下降(0—20 cm)后稳定(20—100 cm)的趋势;在20—30 cm土层,除裸沙的无机氮、铵态氮以及藻-地衣混生结皮的硝态氮外,其余速效氮(无机氮、硝态氮、铵态氮)含量具有增加的特点。2)土壤各氮库含量与全磷、有机碳、电导率、土壤脲酶和亮氨酸氨基肽酶活性呈正相关,与pH、土壤含水率呈负相关。3)利用氮循环相关指标建立土壤氮循环多功能...  相似文献   

6.
湖泊氮素氧化及脱氮过程研究进展   总被引:7,自引:0,他引:7  
范俊楠  赵建伟  朱端卫 《生态学报》2012,32(15):4924-4931
自然界中氮的生物地球化学循环主要由微生物驱动,由固氮作用、硝化作用、反硝化作用和氨化作用来完成。过去数十年间,随着异养硝化、厌氧氨氧化和古菌氨氧化作用的发现,人们对环境中氮素循环认识逐步深入,提出了多种脱氮途径新假说。对湖泊生态系统中氮素的输入、输出及其在水体、沉积物和水土界面的迁移转化过程进行了概括,对湖泊生态系统中反硝化和厌氧氨氧化脱氮机理及脱氮效率的最新研究进展进行了探讨,并对以后的氮素循环研究进行了展望。  相似文献   

7.
放牧家畜排泄物N转化研究进展   总被引:8,自引:2,他引:6  
放牧家畜排泄物氮转化是草原生态系统氮循环的关键。自 2 0世纪 70年代以来 ,以提高氮利用效率和减少温室气体排放为目的的家畜排泄物氮转化的研究越来越受到人们的重视。放牧家畜排泄物氮的转化研究主要包括 3个方面 :氮的矿化、硝化与反硝化 ,氮的氨化。家畜粪氮矿化速度慢 ,持续时间长 ;尿氮矿化速度快 ,持续时间短。氮矿化与家畜排泄物 C∶ N比、木质素/氮素比、木质素含量和纤维素含量呈负相关关系 ,而与全氮含量和水溶性氮含量呈正相关 ;土壤动物和微生物可以显著促进氮的矿化过程 ;高温和相对干燥、砂质土壤较壤土和粘土有利于氮的矿化。 4~ 4 0℃氮硝化作用与温度呈正相关 ;硝化作用的底物和产物浓度、土壤溶液渗透压和氯化物浓度的增加对硝化作用有强烈的抑制效应 ;p H6 .0~ 8.0条件下硝化作用强度随着土壤p H值的升高而增加 ,而 p H值高于 8.0或低于 6 .0时硝化作用受到抑制 ;硝化作用与土壤氧气含量呈正相关关系 ,而与土壤含水量呈负相关 ;温暖湿润较干燥炎热的气候条件有利于硝化过程的进行。反硝化作用与土壤氧气浓度呈负相关关系 ,而与土壤含水量和可利用有机碳含量呈正相关 ;0~ 6 5℃反硝化作用强度随温度升高而增大 ,10~ 35℃条件下温度成为影响反硝化作用的关键因素 ;反硝化作用在  相似文献   

8.
岷江上游半干旱河谷区3种林型土壤氮素的比较   总被引:3,自引:0,他引:3  
黄容  潘开文  王进闯  李伟 《生态学报》2010,30(5):1210-1216
比较研究了岷江上游半干旱河谷区辐射松人工林、油松人工林与邻近灌丛0-20cm、20-40cm、40-60cm土层土壤氮素和氮循环过程相关酶的特征,包括土壤有机碳、全氮、碳氮比、硝态氮、铵态氮、无机氮、微生物量氮含量及蛋白酶、脲酶、硝酸盐还原酶活性。结果表明,辐射松林和油松林各土层土壤有机碳含量、碳氮比和硝酸盐还原酶活性无显著差异,油松林土壤无机氮含量和脲酶活性显著高于辐射松林土壤,而辐射松林土壤微生物量氮含量是3种林型土壤中最高的,灌丛0-20cm土层土壤有机碳、全氮含量最高。此外,有机碳、全氮含量、脲酶活性随土层深度增加而降低;而硝酸盐还原酶活性却随土层深度的增加而增强;同时,各土层间蛋白酶活性差异较小。因此,植被类型对土壤氮素转化有一定影响,而从目前的土壤氮素状况来看,油松林土壤中植物可直接吸收利用的氮素高于辐射松林和灌丛;辐射松林土壤微生物固持的氮素含量最高。区域3种植被类型土壤氮素状况还受到半干旱气候因素的强烈影响。  相似文献   

9.
森林土壤氮素转换及其对氮沉降的响应   总被引:45,自引:5,他引:40  
近几十年人类活动向大气中排放的含氮化合物激增 ,并引起大气氮沉降也成比例增加。目前 ,氮沉降的增加使一些森林生态系统结构和功能发生改变 ,甚至衰退。近 2 0 a欧洲和北美有关氮沉降及其对森林生态系统的影响方面的研究较多 ,而我国少有涉及。森林土壤氮素转换是森林生态系统氮素循环的一个重要的组成部分 ,而矿化、硝化和反硝化作用是其核心过程 ,氮沉降作为驱动因子势必改变森林土壤氮素转换速度、方向和通量。根据国外近 2 0 a有关研究 ,首先介绍了森林土壤氮素转换过程和强度 ,论述森林土壤氮素在生态系统氮素循环中的作用 ,然后在此基础上 ,介绍了氮沉降对森林土壤氮素循环的研究途径 ,探讨了氮沉降对森林土壤氮素矿化、硝化和反硝化作用的影响及其机理  相似文献   

10.
在黄淮砂姜黑土区冬小麦-夏玉米复种两熟种植体系中,研究了小麦季3种耕作方式(常规翻耕、旋耕和深松)结合夏玉米播前3个施氮量(120、225和330 kg·hm-2)对玉米季主要生育时期根际土壤氮素转化微生物作用强度及酶活性、无机氮含量和产量的影响.结果表明: 旋耕方式下氨化作用强度最高,且随着施氮量的增加,土壤氮素转化微生物作用强度及酶活性增强.深松方式下根际土壤硝化、反硝化作用强度与脲酶活性明显高于常规与旋耕方式.增施氮肥可加强深松方式对土壤氮素转化的促进作用,而过量施氮虽然提高了土壤无机氮含量及玉米产量,但会对土壤氮素转化微生物作用强度及酶活性产生抑制.深松方式结合225 kg·hm-2施氮量更有利于砂姜黑土区夏玉米土壤氮素转化,而深松方式结合330 kg·hm-2施氮处理下产量最高.  相似文献   

11.
冬小麦生育期农田尺度下土壤硝态氮淋失动态的数值模拟   总被引:7,自引:1,他引:6  
马军花  任理 《生态学报》2004,24(10):2289-2301
在北京通州区永乐店田间试验的基础上 ,假设土壤由一系列不发生相互作用的一维土柱组成 ,根据实测的土壤有机质含量 ,假定土壤有机氮的矿化作用速率常数 (零级动力学 )和有机质含量成正比 ,运用 HYDRUS- 1D软件 ,分别就考虑和不考虑土壤有机氮的矿化速率的空间变异性这两种方案 ,对 2 0 0 0~ 2 0 0 1年冬小麦生长条件下农田尺度土壤氮素转化和硝态氮淋失规律进行了数值分析。两种方案的模拟结果表明 :考虑和不考虑土壤有机氮矿化速率的空间变异性对剖面 2 5 0 cm埋深处硝态氮淋失量的影响很小 ,其差异主要在于前者对土壤氮素的矿化量、固持及反硝化量、作物吸氮量的影响更大 ,其空间变异性高于不考虑矿化速率时的结果。剖面 2 5 0 cm埋深处平均的土壤水渗透量和累积硝态氮淋失量分别为 2 .2 5 mm、0 .0 0 984 m g/cm2 ,变异系数大于 1.4 6 ,属于强变异性。对模拟结果进行地统计学分析 ,结果表明 :剖面 2 5 0 cm埋深处的土壤水渗透量和硝态氮淋失量的半方差函数为纯块金形式 ,在空间上表现为相互独立。考虑有机氮矿化速率空间变异性时的土壤氮素净转化量、吸氮量均可用球状模型描述 ,其变程与土壤有机质含量的变程接近 ,约为 4 .7m;而不考虑有机氮矿化速率空间变异性时的土壤氮素净转化量用线性无基台值  相似文献   

12.
植物的谷氨酸合成酶   总被引:7,自引:0,他引:7  
植物可以利用的氮源主要是NO_3~-和NH_4~+,与固氮生物共生的植物还可直接利用分子态氮。无机氮素主要以氨的形态参入有机化合物,非氨态的氮源被植物吸收后大都是先由植物将其转化成氨.植物在光呼吸及各种含氮化合物的分解及相互转化等代谢  相似文献   

13.
硝化作用的生化原理   总被引:13,自引:4,他引:9  
郑平  冯孝善   《微生物学通报》1999,26(3):215-217
硝化作用是自然界氮素循环的重要环节之一,有着很大的应用价值。在农业上,可利用硝化作用提高氮素的有效性,从而促进作物对氮素的同化;也可通过抑制硝化作用,以减少反硝化作用引起的氮素损分[1].在环保上,可利用硝化作用开发硝化工艺,控制氨对水生生物的毒害;也可与反硝化作用联合,用于污水生物脱氮[2],掌握硝化作用的生化原理,有助于该反应的调控,本文拟就硝化细菌的能量利用特性、硝化细菌的生物氧化反应和硝化反应的酶学特性作一综述。1硝化细菌的能量利用特性硝化作用包括两个步骤,即氨氧化为亚硝酸和亚硝酸氧化为硝酸。分…  相似文献   

14.
土壤氮素转化的关键微生物过程及机制   总被引:47,自引:0,他引:47  
微生物是驱动土壤元素生物地球化学循环的引擎.氮循环是土壤生态系统元素循环的核心之一,其四个主要过程,即生物固氮作用、氨化作用、硝化作用、反硝化作用,均由微生物所驱动.近10年来,随着免培养的分子生态学技术和高通量测序技术等的发展,在硝化微生物多样性及其作用机理、厌氧氨氧化过程和机理等研究方面取得了突破性进展.本文重点阐述了我国有关土壤硝化微生物方面的研究进展,在此基础上,简要介绍了反硝化微生物和厌氧氨氧化及硝酸盐异化还原成铵作用的研究进展,并对今后的研究工作提出了展望.今后土壤氮素转化微生物生态学的研究,应瞄准国际微生生态学发展的前沿,加强新技术新方法的应用,结合我国农业可持续发展、资源环境保护和全球变化研究的重大需求,重点开展以下几方面的工作:(1)开展大尺度上土壤硝化作用及氨氧化微生物分布的时空演变特征及驱动因子的研究;(2)加强氮素转化关键微生物过程与机理的研究,并与相关过程的通量(如氨挥发、N2O释放)和反应速率(如矿化速率、硝化速率)关联起来;(3)在特定生态系统中系统研究各个氮转化过程的耦合关系,构建相关氮素转化和氮素平衡模型,为定向调控土壤氮素转化过程,提高氮素利用效率并减少其负面效应提供科学依据.  相似文献   

15.
李云  刘炜  王朝辉  高亚军 《生态学报》2014,34(13):3788-3796
在黄土高原南部娄土上,通过2a田间试验研究了小麦和苜蓿对土壤中不同累积量的残留硝态氮的利用差异。研究包括0—3 m土壤残留硝态氮累积量(设N1、N2、N3、N4、N5和N6共6个水平,残留硝态氮量依次增加)和作物种类(冬小麦和苜蓿)2个因素,分别采用冬小麦-夏休闲-冬小麦和苜蓿连作种植方式。结果表明,不施用氮肥条件下,冬小麦-休闲-冬小麦轮作周期与苜蓿连作2a内,土壤残留硝态氮的消长有明显差异。在第1季小麦生长期间,小麦的氮素携出量(63.9—130.3 kg/hm2)、氮素携出量占播前残留硝态氮量的比例(18%—27%)及氮素携出量占该生长季硝态氮减少量的比例(29%—62%)均显著高于同期的苜蓿处理。在第2个生长季内,苜蓿的氮素携出量是小麦当季氮素携出量的近6倍,但由于苜蓿固氮作用强烈,至第2生长季结束后,0—3 m土壤硝态氮量与苜蓿播前相比平均只减少了72.4 kg/hm2,而麦田0—3 m土壤硝态氮量与小麦播前相比减少了158.3 kg/hm2。在短期内如果通过种植作物消耗土壤剖面的残留硝态氮,冬小麦比苜蓿更有优势。第1季小麦氮素携出量与小麦播前0—2 m(r=0.920**)和0—3 m(r=0.857*)土层残留硝态氮量呈显著或极显著正相关,与0—1 m土层残留硝态氮量没有显著相关性;第1生长季苜蓿氮素携出量与播前0—1 m土壤硝态氮累积量呈显著正相关关系(r=0.846*),而与0—2 m和0—3 m土壤硝态氮累积量的相关性并不显著。小麦比苜蓿能利用更深土层中的硝态氮。随着播前0—3 m土壤残留硝态氮的增加,小麦和苜蓿地上部氮素携出量呈增加的趋势,硝态氮表观损失也显著增加。  相似文献   

16.
氮是一切生物的重要构成元素。空气中存在着大量的分子态氮,约占空气成分的80%,估计整个地球大气层中有4,000万亿吨分子态氮,可惜,这么多的分子态氮,除了少数微生物外,大多数生物都不能利用,植物只能从土壤中吸收结合态氮,合成自己的蛋白质一类的含氮化合物,而动物和人以植物为食物,摄取植物中的含氮化合物,合成自己的蛋白质一类的有机氮化合物。那么土壤中的结合态氮又从什么地方来的呢?土壤中的氮化合物,不是土壤本身  相似文献   

17.
陈山红心杉根际土壤有机碳、氮含量及根际效应   总被引:1,自引:0,他引:1  
陈山红心杉(Cunninghania lanceolata)是江西特有树种,获国家地理标志保护。目前关于其植物—土壤关系的研究较少。以不同林龄(5、10、20和40a)陈山红心杉为对象,研究了其根际和非根际土壤有机碳、氮含量和根际效应。结果表明:根际pH略小于非根际,有机碳和氮素总体上大于非根际。随林龄的增加,根际和非根际土壤有机碳和氮含量先降后增;有机碳、全氮和有机氮的根际效应先增后降;铵态氮、硝态氮和无机氮的根际效应先降后趋于平缓;pH和碱解氮的根际效应变化平缓。氮含量对根际和非根际土壤pH和有机碳的影响为全氮无机氮碱解氮;碱解氮和全氮的根际效应分别对pH和有机碳根际效应影响最大。随着林龄的增加,硝态氮的比重高于铵态氮,应注意反硝化作用可能造成的氮素流失,同时林地土壤养分下降,在10 a前后应注意林地有机质和氮素的补充,以防地力衰退。  相似文献   

18.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1  
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   

19.
2008年6月至2009年9月,在野外条件下,采用堆置于地表和埋入地下2种处理方式,研究了内蒙古典型草原马粪分解过程中氮素组分的变化特征.结果表明:2种处理残留马粪中,氨态氮、氨基酸态氮和氨基糖态氮在分解前期(0~90 d)维持较高浓度,后期(330~ 450d)浓度显著降低;酸解未知氮和非酸解未知氮浓度随分解呈升高趋势,分解后期升高幅度更为明显.鲜马粪中,铵态氮是无机氮的主要存在形态,随分解呈逐渐降低趋势;鲜马粪中的硝态氮浓度较低,其在残留马粪中的淋溶损失较低,随分解逐渐累积.马粪埋入地下,对铵态氮以气态氨的挥发过程有显著影响,对其他氮素组分的影响不明显.马粪分解前期,氮素矿化的主要有机氮源为氨态氮、氨基酸态氮和氨基糖态氮,后期主要为酸解未知氮和非酸解未知氮.铵态氮的生物有效性主要体现在马粪分解前期,硝态氮则体现在分解后期.  相似文献   

20.
异形胞与蓝藻的固氮   总被引:3,自引:0,他引:3  
周云龙 《生物学通报》1994,29(11):5-6,13
一些丝状蓝藻具有异形胞,它们是由丝状体中的营养细胞转化而来的,异形胞能够直接固定大气中的N2(分子态),形成可为植物利用的氮素化合物,具异形胞的丝状蓝藻在保持自然界中的氮素循环,增加土壤肥力,提高农作物产量等方面均有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号