首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human cervical carcinoma cell lines that harbor human papillomavirus (HPV) have been reported to retain selectively and express HPV sequences which could encode viral E6 and E7 proteins. The potential importance of HPV E6 to tumors is suggested further by the observation that bovine papillomavirus (BPV) E6 can induce morphologic transformation of mouse cells in vitro. To identify HPV E6 protein, a polypeptide encoded by HPV-16 E6 was produced in a bacterial expression vector and used to raise antisera. The antisera specifically immunoprecipitated the predicted 18-kd protein in two human carcinoma cell lines known to express HPV-16 RNA and in mouse cells morphologically transformed by HPV-16 DNA. The 18-kd E6 protein was distinct from a previously identified HPV-16 E7 protein. The HPV-16 E6 antibodies were found to be type specific in that they did not recognize E6 protein in cells containing HPV-18 sequences and reacted weakly, if at all, to BPV E6 protein. The results demonstrate that human tumors containing HPV-16 DNA can express an E6 protein product. They are consistent with the hypothesis that E6 may contribute to the transformed phenotype in human cervical cancers that express this protein.  相似文献   

2.
Human papillomavirus (HPVs) infect the genital epithelium and are found in proliferative lesions ranging from benign condylomata to invasive carcinomas. The immunological response to these infections is poorly understood because of the lack of purified viral antigens. In this study, bacterially derived fusion proteins expressing segments of all the major open reading frames (ORFs) of HPV type 6b (HPV-6b) have been used in Western blot (immunoblot) assays to detect antibodies directed against HPV-encoded proteins. The most striking reactivities present in sera from patients with genital warts were to the HPV-6b L1 ORF protein and, to a lesser extent, to the HPV-6b L2 ORF protein. Two cases of reactivity to HPV-6b E2 ORF were observed, but no reactivities were seen with other HPV-6b constructs. Two sera reacted with the HPV-16 L2 fusion protein, and two sera reacted with the HPV-16 E4 protein. The antibodies directed against the HPV-6b fusion proteins showed no cross-reactivity with comparable regions of the HPV-16 ORFs. This assay provides a useful approach for further studies of HPV serology.  相似文献   

3.
M Conrad  V J Bubb    R Schlegel 《Journal of virology》1993,67(10):6170-6178
The human papillomavirus (HPV) E5 proteins are predicted from DNA sequence analysis to be small hydrophobic molecules, and the HPV type 6 (HPV-6) and HPV-11 E5 proteins share several structural similarities with the bovine papillomavirus type 1 (BPV-1) E5 protein. Also similar to the BPV-1 E5 protein, the HPV-6 and HPV-16 E5 proteins exhibit transforming activity when assayed on NIH 3T3 and C127 cells. In this study, we expressed epitope-tagged E5 proteins from both the "low-risk" HPV-6 and the "high-risk" HPV-16 in order to permit their immunologic identification and biochemical characterization. While the HPV-6 and HPV-16 E5 proteins fail to form disulfide-linked dimers and oligomers, they did resemble the BPV-1 E5 protein in their intracellular localization to the Golgi apparatus, endoplasmic reticulum, and nuclear membranes. In addition, the HPV E5 proteins also bound to the 16-kDa pore-forming protein component of the vacuolar ATPase, a known characteristic of the BPV-1 E5 protein. These studies reveal a common intramembrane localization and potential cellular protein target for both the BPV and HPV E5 proteins.  相似文献   

4.
5.
C C Li  K V Shah  A Seth    R V Gilden 《Journal of virology》1987,61(9):2684-2690
Genital warts (condylomata acuminata) are among the most frequent sexually transmitted infections. Human papillomavirus type 6 (HPV-6), which is etiologically related to a majority of these lesions, has not been propagated in tissue culture. We generated two forms of HPV-6 viral antigens: a chemically synthesized oligopeptide (referred to as the C-terminal synthetic peptide) corresponding to residues 482 to 495 of the 500-amino-acid-long L1 open reading frame (ORF), and a bacterially expressed 54-kilodalton (kDa) fusion protein containing the N-terminal 13 amino acids encoded by the lambda bacteriophage cII gene followed by one vector-insert junctional residue and 462 amino acids of the L1 ORF sequence (residues 39 to 500). The cII-L1 fusion protein was specifically recognized by an antipeptide serum directed against the N-terminal 13 amino acids derived from the cII gene, an antiserum raised against the C-terminal synthetic peptide, and a genus-specific serum prepared by immunization with disrupted viral capsids. The 54-kDa fusion protein was purified, and the sequence of its first 36 amino acids was determined and found to be as predicted by the DNA sequence. Both the genus-specific anticapsid serum and the antiserum raised against the fusion protein identified authentic L1 ORF proteins in HPV-1-induced (58 kDa) and HPV-6/11-induced (56 kDa) papillomas. The synthetic peptide antiserum recognized the 56- to 58-kDa protein in HPV-6-induced warts, but not in HPV-1- or HPV-11-infected specimens. Using the fusion protein as antigen in immunoassays, we were able to detect the corresponding antibodies in human sera.  相似文献   

6.
The E6 protein of human papillomavirus type 18 (HPV-18) is a putative zinc-finger protein that is expressed in HPV-18-induced genital neoplasias. We have studied the biochemical properties of E6 protein synthesized in large amounts with a baculovirus expression vector. When E6 protein was synthesized in insect cells infected with an E6-expressing baculovirus, the protein was localized to both nuclear and membrane fractions, with half-lives of 4 and 2 h, respectively. Changing the first five amino acids of E6 did not alter the pattern of cellular localization of the protein but dramatically increased the half-life of the nuclear component to longer than 30 h and increased the half-life of the membrane component to 8 h. Although the baculovirus-expressed E6 protein bound to double-stranded DNA with high affinity, no sequence specificity for HPV-18 DNA was detected.  相似文献   

7.
We and others have previously reported that human papillomavirus (HPV)-16 E6 protein expression sensitizes certain cell types to apoptosis. To confirm that this sensitization occurred in HPV's natural host cells, and to explore the mechanism(s) of sensitization, we infected human keratinocytes (HKCs) with retroviruses containing HPV-6 E6, HPV-16 E6, HPV-16 E7, or HPV-16 E6/E7. Apoptosis was monitored by DNA fragmentation gel analysis and direct observation of nuclei in cells stained with DAPI. Exposure of HKCs to etoposide, cisplatin, mitomycin C (MMC), atractyloside, and sodium butyrate, resulted in a time and dose-dependent induction of apoptosis. Expression of HPV-16 E6 and HPV-16 E6/E7, but not HPV-6 E6 or HPV-16 E7, enhanced the sensitivity of HKCs to cisplatin-, etoposide- and MMC-, but not atractyloside- or sodium butyrate-induced apoptosis. Expression of both HPV-16 E6 and HPV-16 E6/E7 decreased, but did not abolish, p53 protein levels relative to normal HKCs, and resulted in cytoplasmic localization of wt p53. P53 induction occurred in HPV-16 E6 and HPV-16 E6/E7 expressing cells after exposure to cisplatin or MMC, though never to levels found in normal untreated HKCs. P21 levels were decreased in HPV-16 E6 and HPV-16 E6/E7 expressing HKCs, and no induction of p21 was seen in these cells following exposure to cisplatin or MMC. Caspase-3 activity was found to be elevated in HPV-16 E6-expressing HKCs following exposure to cisplatin and MMC as documented by fluorometric and Western Blot analysis. Expression of wt CrmA or treatment of HPV-16 E6 expressing HKCs with the caspase-3 inhibitor DEVD.fmk prevented HPV-16 E6-induced sensitization in HKCs. These results suggest that HPV-16 E6 and HPV-16 E6/E7 expression sensitizes HKCs to apoptosis caused by cisplatin, etoposide and MMC, but not atractyloside or sodium butyrate. The data also suggest that wt p53 and caspase-3 activity are required for HPV-16 E6 and HPV-16 E6/E7-induced sensitization of HKCs to DNA damaging agents.  相似文献   

8.
9.
The E7 early viral protein of the oncogenic human papillomavirus type 16 (HPV-16) has been strongly implicated in the maintenance of the malignant phenotype in cervical cancers and cancer-derived cell lines. HPV-16 E7 is a nuclear phosphoprotein that can cooperate with ras to transform baby rat kidney cells, transactivates the adenovirus E2 promoter, and binds to the retinoblastoma (RB) protein. The E7 phosphoprotein of the nononcogenic HPV-6b, which is generally associated with benign genital warts, is similar to the HPV-16 E7 in amino acid sequence but differs dramatically in migration in sodium dodecyl sulfate-polyacrylamide gels, sedimentation in nondenaturing glycerol gradients, and the ability to bind the RB protein. Our results indicate that the RB protein preferentially binds the phosphorylated form of HPV-6b E7, which comprises a minor fraction of the total E7 expressed in transiently transfected COS-7 cells. These characteristics may help to explain the difference in the oncogenic potential of the oncogenic and nononcogenic types of genital papillomaviruses.  相似文献   

10.
Human papillomavirus type 6 (HPV-6) is the etiologic agent of genital warts and recurrent respiratory papillomatosis. We are investigating the mechanism by which this virus stimulates cell proliferation during infection. In this paper, we report that the E5a gene of HPV-6c, an independent isolate of HPV-11, is capable of transforming NIH 3T3 cells. The E5a open reading frame (ORF) was expressed under the control of the mouse metallothionein promoter in the expression vector pMt.neo.1, which also contains the gene for G418 resistance. Transfected cells were selected for G418 resistance and analyzed for a transformed phenotype. The transformed NIH 3T3 cells overgrew a confluent monolayer, had an accelerated generation time, and were anchorage independent. In contrast, E5a did not induce foci in C127 cells, but C127 cells expressing E5a did form small colonies in suspension. The presence of the 12-kilodalton E5a gene product in the transformed NIH 3T3 cells was shown by immunoprecipitation and was localized predominantly to nuclei by an immunoperoxidase assay. A mutation in the E5a ORF was engineered to terminate translation. This mutant was defective for transformation, demonstrating that translation of the E5a ORF is required for biological activity. This is the first demonstration of a transforming oncogene in HPV-6, and the differential activity of E5a in these two cell lines should facilitate future investigations on the mechanism of transformation.  相似文献   

11.
The DNA genome of a novel HPV genotype, HPV-125, isolated from a hand wart of an immuno-competent 19-year old male was fully cloned, sequenced and characterized. The full genome of HPV-125 is 7,809-bp in length with a GC content of 46.4%. By comparing the nucleotide sequence of the complete L1 gene, HPV-125 is phylogenetically placed within cutaneotrophic species 2 of Alphapapillomaviruses, and is most closely related to HPV-3 and HPV-28. HPV-125 has a typical genomic organization of Alphapapillomaviruses and contains genes coding for five early proteins, E6, E7, E1, E2 and E4 and two late capsid proteins, L1 and L2. The genome contains two non-coding regions: the first located between the L1 and E6 genes (nucleotide positions 7,137-7,809, length 673-bp) and the second between genes E2 and L2 (nucleotide positions 3,757-4,216, length 460-bp). The E6 protein of HPV-125 contains two regular zinc-binding domains at amino acid positions 29 and 102, whereas the E7 protein exhibits one such domain at position 50. HPV-125 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of HPV-125, a quantitative type-specific real-time PCR was developed. The 95% limit-of-detection of the assay was 2.5 copies per reaction (range 1.7-5.7) and the intra- and inter-assay coefficients of variation were 0.47 and 2.00 for 100 copies per reaction, and 1.15 and 2.15 for 10 copies per reaction, respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (a total of 601 samples) showed that HPV-125 is a relatively rare HPV genotype, with cutaneous tropism etiologically linked with sporadic cases of common warts.  相似文献   

12.
The E6 and the E7 proteins of the oncogenic human papillomavirus types 16 and 18 can stably associate with p53 and the retinoblastoma protein, respectively. The E6-p53 interaction results in the accelerated degradation of p53 in vitro via the ubiquitin-dependent proteolysis system. In this study we demonstrate that a fusion protein consisting of the N-terminal half of the HPV-16 E7 protein and the full length HPV-16 E6 protein promotes the in vitro degradation of the retinoblastoma protein. This indicates that the property of the HPV-16 E6 protein to stimulate the degradation of p53 can be targeted to other proteins. Unlike the HPV-16 or HPV-18 E6 protein, the E6 proteins of HPV-6 and 11 do not bind to p53 and consequently do not target p53 for degradation. Analogous E7-E6 fusion proteins using the E6 proteins of HPV-6 and HPV-11, however, also have the ability to promote the degradation of the retinoblastoma protein, indicating that the property to target associated proteins for degradation is shared by the anogenital specific HPV E6 proteins.  相似文献   

13.
14.
Chang SW  Tsao YP  Lin CY  Chen SL 《Journal of virology》2011,85(13):6750-6763
Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression.  相似文献   

15.
16.
DNA from two novel HPV genotypes, HPV-150 and HPV-151, isolated from hair follicles of immuno-competent individuals, was fully cloned, sequenced and characterized. The complete genomes of HPV-150 and HPV-151 are 7,436-bp and 7,386-bp in length, respectively. Both contain genes for at least six proteins, namely E6, E7, E1, E2, L2, L1, as well as a non-coding upstream regulatory region located between the L1 and E6 genes: spanning 416-bp in HPV-150 (genomic positions 7,371 to 350) and 322-bp in HPV-151 (genomic positions 7,213 to 148). HPV-150 and HPV-151 are phylogenetically placed within the Betapapillomavirus genus and are most closely related to HPV-96 and HPV-22, respectively. As in other members of this genus, the intergenic E2-L2 region is very short and does not encode for an E5 gene. Both genotypes contain typical zinc binding domains in their E6 and E7 proteins, but HPV-151 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of the novel genotypes, quantitative type-specific real-time PCR assays were developed. The 95% detection limits of the HPV-150 and HPV-151 assays were 7.3 copies/reaction (range 5.6 to 11.4) and 3.4 copies/reaction (range 2.5 to 6.0), respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (total of 540 samples) revealed that HPV-150 and HPV-151 are relatively rare genotypes with a cutaneous tropism. Both genotypes were found in sporadic cases of common warts and SCC and BCC of the skin as single or multiple infections usually with low viral loads. HPV-150 can establish persistent infection of hair follicles in immuno-competent individuals. A partial L1 sequence of a putative novel HPV genotype, related to HPV-150, was identified in a squamous cell carcinoma of the skin obtained from a 64-year old immuno-compromised male patient.  相似文献   

17.
The mechanism of DNA replication is conserved among papillomaviruses. The virus-encoded E1 and E2 proteins collaborate to target the origin and recruit host DNA replication proteins. Expression vectors of E1 and E2 proteins support homologous and heterologous papillomaviral origin replication in transiently transfected cells. Viral proteins from different genotypes can also collaborate, albeit with different efficiencies, indicating a certain degree of specificity in E1-E2 interactions. We report that, in the assays of our study, the human papillomavirus type 11 (HPV-11) E1 protein functioned with the HPV-16 E2 protein, whereas the HPV-16 E1 protein exhibited no detectable activity with the HPV-11 E2 protein. Taking advantage of this distinction, we used chimeric E1 proteins to delineate the E1 protein domains responsible for this specificity. Hybrids containing HPV-16 E1 amino-terminal residues up to residue 365 efficiently replicated either viral origin in the presence of either E2 protein. The reciprocal hybrids containing amino-terminal HPV-11 sequences exhibited a high activity with HPV-16 E2 but no activity with HPV-11 E2. Reciprocal hybrid proteins with the carboxyl-terminal 44 residues from either E1 had an intermediate property, but both collaborated more efficiently with HPV-16 E2 than with HPV-11 E2. In contrast, chimeras with a junction in the putative ATPase domain showed little or no activity with either E2 protein. We conclude that the E1 protein consists of distinct structural and functional domains, with the carboxyl-terminal 284 residues of the HPV-16 E1 protein being the primary determinant for E2 specificity during replication, and that chimeric exchanges in or bordering the ATPase domain inactivate the protein.  相似文献   

18.
Previously, we found that human papillomavirus type 16 (HPV-16) E5 protein is a tumor rejection antigen and can induce cytotoxic T-lymphocyte (CTL) activity. Therefore, in this study, human leukocyte antigen A*0201 (HLA-A*0201)-restricted human CTL epitopes of HPV-16 E5 protein were identified using a bioinformatics approach, and the abilities of these predicted peptides to induce an immune response in HLA-A*0201 transgenic mice were confirmed by assaying E5-specific CTLs and in vitro-generated CTLs from normal peripheral blood T lymphocytes of HLA-A2-positive human donors. Second, the CTL responses to HLA-A*0201 CTL epitopes (E5 63-71 and E7 11-20) were examined in HPV-16-infected patients with HLA-A2. Third, the effect of HLA-A-type alleles on CTL activities in response to the entire E5 and E7 proteins was examined in cervical cancer patients. E5 and E7 peptides (but not the whole proteins) stimulated E5- and E7-specific CTL recall responses in HPV-16- and HLA-A2-positive cervical cancer patients, and HPV-16 E5 and E7 proteins stimulated na?ve T cells in HPV-16-negative cervical cancer patients with HLA-A11 and -A24 haplotypes. In summary, this is the first demonstration that E5 63-71 is an HLA-A*0201-restricted T-cell epitope of HPV-16 E5.  相似文献   

19.
20.
Human papillomavirus type 16 (HPV-16) and HPV-18 are often detected in cervical carcinomas, while HPV-6, although frequently present in benign genital lesions, is only rarely present in cancers of the cervix. Therefore, infections with HPV-16 and HPV-18 are considered high risk and infection with HPV-6 is considered low risk. We found, by using a heterologous promoter system, that expression of the E7 transforming protein differs between high- and low-risk HPVs. In high-risk HPV-16, E7 is expressed from constructs containing the complete upstream E6 open reading frame. In contrast, HPV-6 E7 was efficiently translated only when E6 was deleted. By using clones in which the coding regions of HPV-6, HPV-16, and HPV-18 E7s were preceded by identical leader sequences, we found that the ability of the E7 gene products to induce anchorage-independent growth in rodent fibroblasts correlated directly with the oncogenic association of the HPV types. By using an immortalization assay of normal human keratinocytes that requires complementation of E6 and E7, we found that both E6 and E7 of HPV-18 could complement the corresponding gene from HPV-16. However, neither E6 nor E7 from HPV-6 was able to substitute for the corresponding gene of HPV-16 or HPV-18. Our results suggest that multiple factors, including lower intrinsic biological activity of E6 and E7 and differences in the regulation of their expression, account for the low activity of HPV-6, in comparison with HPV-16 and HPV-18, in in vitro assays. These same factors may, in part, account for the apparent difference in oncogenic potential between these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号