首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major target of the HPV E6 oncoprotein is the human Discs Large (hDlg) tumour suppressor, although how this interaction contributes to HPV-induced malignancy is still unclear. Using a proteomic approach we show that a strong interacting partner of hDlg is the RhoG-specific guanine nucleotide exchange factor SGEF. The interaction between hDlg1 and SGEF involves both PDZ and SH3 domain recognition, and directly contributes to the regulation of SGEF''s cellular localization and activity. Consistent with this, hDlg is a strong enhancer of RhoG activity, which occurs in an SGEF-dependent manner. We also show that HPV-18 E6 can interact indirectly with SGEF in a manner that is dependent upon the presence of hDlg and PDZ binding capacity. In HPV transformed cells, E6 maintains a high level of RhoG activity, and this is dependent upon the presence of hDlg and SGEF, which are found in complex with E6. Furthermore, we show that E6, hDlg and SGEF each directly contributes to the invasive capacity of HPV-16 and HPV-18 transformed tumour cells. These studies demonstrate that hDlg has a distinct oncogenic function in the context of HPV induced malignancy, one of the outcomes of which is increased RhoG activity and increased invasive capacity.  相似文献   

2.
Kozlov G  Gehring K  Ekiel I 《Biochemistry》2000,39(10):2572-2580
The solution structure of the second PDZ domain (PDZ2) from human phosphatase hPTP1E has been determined using 2D and 3D heteronuclear NMR experiments. The binding of peptides derived from the C-terminus of the Fas receptor to PDZ2 was studied via changes in backbone peptide and protein resonances. The structure is based on a total of 1387 nonredundant experimental NMR restraints including 1261 interproton distance restraints, 45 backbone hydrogen bonds, and 81 torsion angle restraints. Analysis of 30 lowest-energy structures resulted in rmsd values of 0.41 +/- 0.09 A for backbone atoms (N, Calpha, C') and 1.08 +/- 0.10 A for all heavy atoms, excluding the disordered N- and C-termini. The hPTP1E PDZ2 structure is similar to known PDZ domain structures but contains two unique structural features. In the peptide binding domain, the first glycine of the GLGF motif is replaced by a serine. This serine appears to replace a bound water observed in PDZ crystal structures that hydrogen bonds to the bound peptide's C-terminus. The hPTP1E PDZ2 structure also contains an unusually large loop following strand beta2 and proximal to the peptide binding site. This well-ordered loop folds back against the PDZ domain and contains several residues that undergo large amide chemical shift changes upon peptide binding. Direct observation of peptide resonances demonstrates that as many as six Fas peptide residues interact with the PDZ2 domain.  相似文献   

3.
The high-risk human papilloma virus (HPV) oncoproteins E6 and E7 interact with key cellular regulators and are etiological agents for tumorigenesis and tumor maintenance in cervical cancer and other malignant conditions. E6 induces degradation of the tumor suppressor p53, activates telomerase and deregulates cell polarity. Analysis of E6 derived from a number of high risk HPV finally yielded the first structure of a wild-type HPV E6 domain (PDB 2M3L) representing the second zinc-binding domain of HPV 51 E6 (termed 51Z2) determined by NMR spectroscopy. The 51Z2 structure provides clues about HPV-type specific structural differences between E6 proteins. The observed temperature sensitivity of the well-folded wild-type E6 domain implies a significant malleability of the oncoprotein in vivo. Hence, the structural differences between individual E6 and their malleability appear, together with HPV type-specific surface exposed side-chains, to provide the structural basis for the different interaction networks reported for individual E6 proteins. Furthermore, the interaction of 51Z2 with a PDZ domain of hDlg was analyzed. Human Dlg constitutes a prototypic representative of the large family of PDZ proteins regulating cell polarity, which are common targets of high-risk HPV E6. Nine C-terminal residues of 51Z2 interact with the second PDZ domain of hDlg2. Surface plasmon resonance in conjunction with the NMR spectroscopy derived complex structure (PDB 2M3M) indicate that E6 residues N-terminal to the canonical PDZ-BM of E6 significantly contribute to this interaction and increase affinity. The structure of the complex reveals how residues outside of the classical PDZ-BM enhance the affinity of E6 towards PDZ domains. Such mechanism facilitates successful competition of E6 with cellular PDZ-binding proteins and may apply to PDZ-binding proteins of other viruses as well.  相似文献   

4.
Human papillomavirus (HPV) E6 oncoprotein targets certain tumor suppressors such as MAGI-1 and SAP97/hDlg for degradation. A short peptide at the C terminus of E6 interacts specifically with the PDZ domains of these tumor suppressors, which is a property unique to high-risk HPVs that are associated with cervical cancer. The detailed recognition mechanisms between HPV E6 and PDZ proteins are unclear. To understand the specific binding of cellular PDZ substrates by HPV E6, we have solved the crystal structures of the complexes containing a peptide from HPV18 E6 bound to three PDZ domains from MAGI-1 and SAP97/Dlg. The complex crystal structures reveal novel features of PDZ peptide recognition that explain why high-risk HPV E6 can specifically target these cellular tumor suppressors for destruction. Moreover, a new peptide-binding loop on these PDZs is identified as interacting with the E6 peptide. Furthermore, we have identified an arginine residue, unique to high-risk HPV E6 but outside the canonical core PDZ recognition motif, that plays an important role in the binding of the PDZs of both MAGI-I and SAP97/Dlg, the mutation of which abolishes E6's ability to degrade the two proteins. Finally, we have identified a dimer form of MAGI-1 PDZ domain 1 in the cocrystal structure with E6 peptide, which may have functional relevance for MAGI-1 activity. In addition to its novel insights into the biochemistry of PDZ interactions, this study is important for understanding HPV-induced oncogenesis; this could provide a basis for developing antiviral and anticancer compounds.  相似文献   

5.
Synaptic delivery of GluR-A (GluR1) subunit-containing glutamate receptors depends on a C-terminal type I PDZ binding motif in GluR-A. Synapse-associated protein 97 (SAP97) is the only PDZ domain protein known to associate with GluR-A. We have used NMR spectroscopy and a biotinylated peptide binding assay to characterize the interaction between synthetic GluR-A C-terminal peptides and the PDZ2 domain of SAP97 (SAP97(PDZ2)), previously determined to be the dominant factor responsible for the interaction. The binding mode appeared to be strongly influenced by redox conditions. Chemical shift changes observed in NMR spectra indicate that under reducing conditions, the last four residues of GluR-A peptides bind to PDZ2 in a fashion typical of class I PDZ interactions. The binding is weak and relatively nonselective as it occurs similarly with a PDZ2 domain derived from PSD-95, a related protein not believed to directly interact with GluR-A. In the absence of reducing agents, conserved cysteine residues in SAP97(PDZ2) and the GluR-A C-terminus gave rise to an anomalous behavior in a microplate assay with a biotinylated GluR-A 18-mer peptide. A covalent disulfide-linked complex between SAP97(PDZ2) and the GluR-A peptide was seen in the binding assay and in the NMR experiments performed under oxidizing conditions. The results are consistent with a two-step binding mechanism consisting of an initial PDZ interaction followed by stabilization of the complex by a disulfide bond. The possible physiological relevance of redox regulation of SAP97-GluR-A interaction remains to be established.  相似文献   

6.
The oncoprotein E6 produced by tumorigenic high-risk genital human papillomaviruses targets a number of cellular proteins containing PDZ domains for proteasome-mediated degradation. In particular, E6 targets the tight junction protein MAGI-1 by binding to its PDZ1 domain. Using light scattering and NMR, we explored different fragments of both the HPV16 E6 and the MAGI-1 PDZ1 domain to define the best-behaving complex for solution structure studies. We showed that the 70-residue HPV16 E6 C-terminal domain (E6C) can be efficiently substituted by a peptide spanning the 11 C-terminal residues of E6. The construct of MAGI-1 PDZ1 best suited for solution structure analysis presents a 14-residue N-terminal extension and a 26-residue C-terminal extension as compared to the construct used for the recently solved X-ray structure of a MAGI-1 PDZ1/HPV18 E6 complex. These data suggest a stabilizing role for the interdomain linker regions which separate the PDZ1 domain from its neighboring domains.  相似文献   

7.
The solution structure of the second PDZ domain from human phosphatase hPTP1E in complex with a C-terminal peptide from the guanine nucleotide exchange factor RA-GEF-2 has been determined using 2D and 3D heteronuclear NMR experiments. Compared to previously solved structures, the hPTP1E complex shows an enlarged interaction surface with the C terminus of the bound peptide. Novel contacts were found between the long structured beta2/beta3 loop of the PDZ domain and the sixth amino acid residue from the C terminus of the peptide. This work underlines the importance of the beta2/beta3 loop for ligand selection by PDZ domains.  相似文献   

8.
A series of multivalent peptides, with the ability to simultaneously bind two separate PDZ domain proteins, has been designed, synthesized, and tested by isothermal titration calorimetry (ITC). The monomer sequences, linked with succinate, varied in length from five to nine residues. The thermodynamic binding parameters, in conjunction with results from mass spectrometry, indicate that a ternary complex is formed in which each peptide arm binds two equivalents of the third PDZ domain (PDZ3) of the neuronal protein PSD-95.  相似文献   

9.
The membrane associated guanylate kinase (MAGUK) family member, human Discs Large 1 (hDlg1) uses a PDZ domain array to interact with the polarity determinant, the Adenomatous Polyposis Coli (APC) microtubule plus end binding protein. The hDLG1-APC complex mediates a dynamic attachment between microtubule plus ends and polarized cortical determinants in epithelial cells, stem cells, and neuronal synapses. Using its multi-domain architecture, hDlg1 both scaffolds and regulates the polarity factors it engages. Molecular details underlying the hDlg1-APC interaction and insight into how the hDlg1 PDZ array may cluster and regulate its binding factors remain to be determined. Here, I present the crystal structure of the hDlg1 PDZ2-APC complex and the molecular determinants that mediate APC binding. The hDlg1 PDZ2-APC complex also provides insight into potential modes of ligand-dependent PDZ domain clustering that may parallel Dlg scaffold regulatory mechanisms. The hDlg1 PDZ2-APC complex presented here represents a core biological complex that bridges polarized cortical determinants with the dynamic microtubule cytoskeleton.  相似文献   

10.
PDZ domains are protein interaction domains that are found in cytoplasmic proteins involved in signaling pathways and subcellular transport. Their roles in the control of cell growth, cell polarity, and cell adhesion in response to cell contact render this family of proteins targets during the development of cancer. Targeting of these network hubs by the oncoprotein E6 of “high-risk” human papillomaviruses (HPVs) serves to effect the efficient disruption of cellular processes. Using NMR, we have solved the three-dimensional solution structure of an extended construct of the second PDZ domain of MAGI-1 (MAGI-1 PDZ1) alone and bound to a peptide derived from the C-terminus of HPV16 E6, and we have characterized the changes in backbone dynamics and hydrogen bonding that occur upon binding. The binding event induces quenching of high-frequency motions in the C-terminal tail of the PDZ domain, which contacts the peptide upstream of the canonical X-[T/S]-X-[L/V] binding motif. Mutations designed in the C-terminal flanking region of the PDZ domain resulted in a significant decrease in binding affinity for E6 peptides. This detailed analysis supports the notion of a global response of the PDZ domain to the binding event, with effects propagated to distal sites, and reveals unexpected roles for the sequences flanking the canonical PDZ domain boundaries.  相似文献   

11.
The PDZ domain of neuronal nitric oxide synthase (nNOS) functions as a scaffold for organizing the signal transduction complex of the enzyme. The NMR structure of a complex composed of the nNOS PDZ domain and an associated peptide suggests that a two-stranded beta-sheet C-terminal to the canonical PDZ domain may mediate its interaction with the PDZ domains of postsynaptic density-95 and alpha-syntrophin. The structure also provides the molecular basis of recognition of Asp-X-Val-COOH peptides by the nNOS PDZ domain. The role of the C-terminal extension in Asp-X-Val-COOH peptide binding is investigated. Additionally, NMR studies further show that the Asp-X-Val-COOH peptide and a C-terminal peptide from a novel cytosolic protein named CAPON bind to the same pocket of the nNOS PDZ domain.  相似文献   

12.
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a “model” peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.  相似文献   

13.
Diphtheria toxin repressor (DtxR) regulates the expression of iron-sensitive genes in Corynebacterium diphtheriae, including the diphtheria toxin gene. DtxR contains an N-terminal metal- and DNA-binding domain that is connected by a proline-rich flexible peptide segment (Pr) to a C-terminal src homology 3 (SH3)-like domain. We determined the solution structure of the intramolecular complex formed between the proline-rich segment and the SH3-like domain by use of NMR spectroscopy. The structure of the intramolecularly bound Pr segment differs from that seen in eukaryotic prolylpeptide-SH3 domain complexes. The prolylpeptide ligand is bound by the SH3-like domain in a deep crevice lined by aliphatic amino acid residues and passes through the binding site twice but does not adopt a polyprolyl type-II helix. NMR studies indicate that this intramolecular complex is present in the apo-state of the repressor. Isothermal equilibrium denaturation studies show that intramolecular complex formation contributes to the stability of the apo-repressor. The binding affinity of synthetic peptides to the SH3-like domain was determined using isothermal titration calorimetry. From the structure and the binding energies, we calculated the enhancement in binding energy for the intramolecular reaction and compared it to the energetics of dimerization. Together, the structural and biophysical studies suggest that the proline-rich peptide segment of DtxR functions as a switch that modulates the activation of repressor activity.  相似文献   

14.
Xiao F  Weng J  Fan K  Wang W 《PloS one》2011,6(6):e21527
The gap junction protein connexin43 (Cx43) binds to the second PDZ domain of Zonula occludens-1 (ZO-1) through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9) and Ser (-10) of the peptide can disrupt the association. However, only a crystal structure of ZO-1 PDZ2 in complex with a shorter 9 aa peptide of connexin43 was solved experimentally. Here, the interactions between ZO-1 PDZ2 and the short, long and phosphorylated Cx43 peptides were studied using molecular dynamics (MD) simulations and free energy calculation. The short peptide bound to PDZ2 exhibits large structural variations, while the extension of three upstream residues stabilizes the peptide conformation and enhanced the interaction. Phosphorylation at Ser(-9) significantly weakens the binding and results in conformational flexibility of the peptide. Glu210 of ZO-1 PDZ2 was found to be a key regulatory point in Cx43 binding and phosphorylation induced dissociation.  相似文献   

15.
The second PDZ domain of postsynaptic density-95 (PSD-95 PDZ2) plays a critical role in coupling N-methyl-D-aspartate receptors to neuronal nitric oxide synthase (nNOS). In this work, the solution structure of PSD-95 PDZ2 was determined to high resolution by NMR spectroscopy. The structure of PSD-95 PDZ2 was compared in detail with that of alpha1-syntrophin PDZ domain, as the PDZ domains share similar target interaction properties. The interaction of the PSD-95 PDZ2 with a carboxyl-terminal peptide derived from a cytoplasmic protein CAPON was studied by NMR titration experiments. Complex formation between PSD-95 PDZ2 and the nNOS PDZ was modelled on the basis of the crystal structure of the alpha1-syntrophin PDZ/nNOS PDZ dimer. We found that the prolonged loop connecting the betaB and betaC strands of PSD-95 PDZ2 is likely to play a role in both the binding of the carboxyl-terminal peptide and the nNOS beta-finger. Finally, the backbone dynamics of the PSD-95 PDZ2 in the absence of bound peptide were studied using a model-free approach. The "GLGF"-loop and the loop connecting alphaB and betaF of the protein display some degree of flexibility in solution. The rest of the protein is rigid and lacks detectable slow time-scale (microseconds to milliseconds) motions. In particular, the loop connecting betaB and betaC loop adopts a well-defined, rigid structure in solution. It appears that the loop adopts a pre-aligned conformation for the PDZ domain to interact with its targets.  相似文献   

16.
The E6 protein of human papillomavirus (HPV) exhibits complex interaction patterns with several host proteins, and their roles in HPV-mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor suppressor protein synapse-associated protein 97 (SAP97). All of the potential binding sites in SAP97 bind E6 with micromolar affinity. The dissociation rate constants govern the different affinities of HPV16 and HPV18 E6 for SAP97. Unexpectedly, binding is not mutually exclusive, and all three PDZ domains can simultaneously bind E6. Intriguingly, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues distal to the canonical binding pocket in the PDZ(2) domain exhibited noncanonical interactions with the E6 protein. This is consistent with a larger proportion of the protein surface defining binding specificity, as compared with that reported previously.  相似文献   

17.
PDZ10 is the 10th of 13 PDZ domains found within MUPP1, a cytoplasmic scaffolding protein first identified as an endogenous binding partner of serotonin receptor type 2c (5HT2c). This association, as with those of several other interacting proteins that have subsequently been identified, is mediated through the C-terminal tail of the PDZ domain partner. Using isothermal titration calorimetry (ITC), we measured the thermodynamic binding parameters [changes in Gibbs free energy (DeltaG), enthalpy (DeltaH) and entropy (TDeltaS)] of the isolated PDZ10 domain for variable-length N-acetylated peptides from the 5HT2c serotonin receptor C-terminal sequence, as well as for octapeptides of eight other putative partner proteins of PDZ10 (5HT2a, hc-kit, hTapp1, mTapp2, TARP, NG2, claudin-1, and HPV-18 E6). In length dependence studies of the 5HT2c sequence, the maximal affinity of the peptides leveled off rapidly and further elongation did not significantly improve the dissociation constant (Kd) of 11 microM observed with the pentapeptide. Among the native partners of PDZ10, octapeptides derived from the hc-kit and 5HT2c proteins were the strongest binders, with Kd values of 5.2 and 8.5 microM, respectively. The heat capacity change (DeltaCp) for the 5HT2c octapeptide was determined to be -94 cal/mol, and a calculated estimate indicates burial of polar and apolar surface areas in equal measure upon ligand binding. Peptides with phosphoserine at either the P-1 or P-2 position experienced decreased affinity, which is in accord with the hypothesis that reversible phosphorylation is a possible mechanism for regulating PDZ domain-mediated interactions. Additionally, two conformationally constrained side chain-bridged cyclic peptide ligands were also designed, prepared, evaluated by ITC, and shown to bind PDZ10 primarily through a favorable change in entropy.  相似文献   

18.
The human AF-6, a scaffold protein between cell membrane-associated proteins and the actin cytoskeleton, plays an important role in special cell-cell junctions and signal transduction. It can be phosphorylated by the protein kinase Bcr, which allows efficient binding of the C terminus of Bcr to the PDZ domain of AF-6 and consequently enhances the binding affinity of AF-6 to Ras. Formation of the AF-6, Bcr, and Ras ternary complex results in down-regulation of the Ras-mediated signal transduction pathway. To better understand the molecular basis for the recognition of the AF-6 PDZ domain and Bcr, we solve the solution structure of the AF-6 PDZ domain complexed with the C-terminal peptide of Bcr and explore the interactions between them in detail. Compared with previously reported structures, the complex exhibits a noncanonical binding mode of PDZ/peptide. Owing to the distinct residues involved in the AF-6 PDZ domain and Bcr peptide interaction, the interaction mode does not adapt to the existing classification rules that have been put forward, based on the ligand or the PDZ domain specificity. Furthermore, the PDZ domain of AF-6 can bind to the C terminus of Bcr efficiently after phosphorylation of AF-6 by the Bcr kinase. The phosphorylation may induce a conformational change of AF-6, which makes the binding surface on the PDZ domain accessible to Bcr for efficient binding. This study not only characterizes the structural details of the AF-6 PDZ/Bcr peptide complex, but also provides a potential target for future drug design and disease therapy.  相似文献   

19.
PDZ domains are protein-protein interaction modules that are crucial for the assembly of structural and signaling complexes. PDZ domains specifically bind short carboxyl-terminal peptides and occasionally internal sequences that structurally resemble peptide termini. Previously, using yeast two-hybrid methodology, we studied the interaction of two PDZ domains present in the large submembranous protein tyrosine phosphatase PTP-BL with' the C-terminal half of the LIM domain-containing protein RIL. Deletion of the extreme RIL C-terminus did not eliminate binding, suggesting the presence of a PDZ binding site within the RIL LIM moiety. We have now performed experiments in mammalian cell lysates and found that the RIL C-terminus proper, but not the RIL LIM domain, can interact with PTP-BL, albeit very weakly. However, this interaction with PTP-BL PDZ domains is greatly enhanced when the combined RIL LIM domain and C-terminus is used, pointing to synergistic effects. NMR titration experiments and site-directed mutagenesis indicate that this result is not dependent on specific interactions that require surface exposed residues on the RIL LIM domain, suggesting a stabilizing role in the association with PTP-BL.  相似文献   

20.
The E6 proteins from high-risk, cancer-causing types of human papillomavirus (HPV) are characterized by the presence of a PDZ (PSD95/Dlg/ZO-1) binding motif in their extreme carboxy termini, through which they interact with a number of cellular PDZ domain-containing substrates. In order to ascertain how many of these are degraded by E6 in vivo, we performed an extensive analysis of the effects of E6 ablation on the expression levels of a number of previously reported E6 PDZ substrates. Using HPV type 16 (HPV-16)-positive CaSKi cells and HPV-18-positive HeLa cells, we have found that MAGI-1 is a major degradation target of both HPV-16 and HPV-18 E6. In contrast, hDlg, hScrib, PTPN3, TIP2, FAP1, and PSD95 all exhibit various degrees of susceptibility to E6-induced degradation, and a high degree of HPV type specificity is observed for certain substrates. We also show that E6 preferentially targets MAGI-1 within the nucleus and at membrane sites. One of the direct consequences of MAGI-1 degradation is a loss of tight-junction integrity, as determined by mislocalization of the tight-junction protein ZO-1. Ablation of E6 expression restores tight junctions, and this restoration is dependent on the presence of MAGI-1. These results demonstrate that oncogenic HPV E6 proteins disrupt cellular tight junctions through the degradation of MAGI-1, and they provide further evidence of how the PDZ binding potential of E6 can contribute to HPV-induced malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号