首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NKX3.1是前列腺特异表达的同源盒基因,在前列腺癌的发生发展中起重要作用,而在前列腺癌进展中常会发生p53的基因突变.为研究两者之间的关系,构建NKX-3.1启动子(1 040bp)-荧光素酶报告基因重组质粒(pGL3-1040)及其缺失突变体,瞬时转染前列腺癌细胞LNCaP.通过荧光素酶表达活性分析,检测p53过表达对NKX3.1启动子活性的影响.结果表明:p53在LNCaP细胞中过表达可明显抑制NKX3.1启动子活性;RT-PCR及Western印迹检测p53过表达对NKX3.1表达的影响.结果表明,p53过表达可以明显抑制同源盒基因NKX3.1的表达.通过TRANSFAC软件分析,在NKX3.1基因上游-526至-507区存在一个p53反应元件的5′核心序列.缺失pGL3-1040中的p53反应元件核心序列并不能消除p53对NKX3.1启动子的抑制作用,表明p53不是通过p53反应元件直接抑制NKX3.1启动子活性.进一步通过5′缺失突变分析,发现NKX3.1启动子-140~+8 bp区仍受p53负调控.此148 bp区域中含有一个Sp1和一个CREB元件,瞬时共转染Sp1表达载体或CREB表达载体的结果表明,p53并不是通过与Sp1或CREB相互作用对NKX3.1启动子发挥抑制作用的.上述结果表明,p53过表达可以抑制同源盒基因NKX3.1启动子活性,下调NKX3.1基因的转录,其调控机制有待进一步研究.  相似文献   

2.
NKX3.1 is a prostate-specific homeobox gene related to prostate development and prostate cancer. In this work, we aimed to identify precisely the functional cis-element in the 197 bp region (from -1032 to -836 bp) of the NKX3.1 promoter (from -1032 to +8 bp), which was previously identified to present positive regulatory activity on NKX3.1 expression, by deletion mutagenesis analysis and electrophoretic mobility shift assay (EMSA). A 16 bp positive cis-element located between -920 and -905 bp upstream of the NKX3.1 gene was identified by deletion mutation analysis and proved to be a functional positive cis-element by EMSA. It will be important to further study the functions and regulatory mechanisms of this positive cis-element in NKX3.1 gene expression.  相似文献   

3.
NKX3.1 is a prostate-specific homeobox gene related strongly to prostate development and prostate cancer. However, little is known about the mechanism for regulation of NKX3.1 in prostate cancer. With RT-PCR and western blot, we found that NKX3.1 expression was enhanced by over-expression of Sp1 at both the mRNA and protein levels in prostate cancer LNCaP cells. To identify the Sp1-elements in the promoter region of NKX3.1, a 521 bp-promoter of human NKX3.1 gene containing three possible Sp1-elements was cloned into the upstream of the luciferase reporter gene in pGL3-basic plasmid. With deletion mutation analysis, plasmid construction, EMSA and oligonucleotide decoy technique, two Sp1-elements which located between +29 to +43 and −60 to −46 of NKX3.1 gene were identified and proven to be functional elements. It will be important to further study on the functions and the regulatory mechanisms of Sp1 element in NKX3.1 gene expression.  相似文献   

4.
5.
6.
NKX3.1, a prostate-specific homeobox gene, plays an important role in prostate cancer and usually functions as tumor suppressor gene. Previously we have demonstrated that forced expression of NKX3.1 reduced cell growth and invasion in prostate cancer cell line PC-3. Presently, we investigated the effect of NKX3.1 on the sensitivity of the prostate cancer cells to apoptosis inducer tumor necrosis factor-α (TNF-α) and cycloheximide (CHX). PC-3 cells were transfected with NKX3.1 expression plasmid (pcDNA3.1-NKX3.1) and LNCaP cells were transfected with siRNA expression plasmid (pRNAT-RNAi1) targeting NKX3.1. The cell morphology and apoptotic rate were analyzed by Hoechst 33342 staining and Flow Cytometry in absence or presence of TNF-α and CHX. The activity of caspase-3 was determined using DEVD-pNA as substrate. Simultaneously, the effect of NKX3.1 on caspase-3 expression was detected using RT-PCR and Western blot. The results showed that ectopic expression of NKX3.1 promoted TNF-α/CHX-induced apoptosis in PC-3 cells, whereas knockdown of NKX3.1 protected LNCaP cells from apoptosis induced by TNF-α/CHX. The pro-apoptosis activity of NKX3.1 might partially contribute to its elevation of caspase-3 expression and activity. Manipulating NKX3.1 expression should be a promising therapeutic strategy for treating both androgen-dependent and androgen-independent prostate cancer.  相似文献   

7.
8.
9.
NKX3.1, a prostate-specific gene, plays an important role in prostate development and carcinogenesis. However, its precise function has not been established. In present study, we transfected the NKX3.1 eukaryotic expression plasmid (pcDNA3.1-NKX3.1) into human prostate cancer cells PC-3, which lack of NKX3.1 expression, and established stable transfectants. Then, we investigated the influence of NKX3.1 on the cell growth, cell migration and colony formation efficiency. The results showed that restoration of NKX3.1 expression inhibited proliferation and invasion activities of PC-3 cells. Further, a cDNA microarray containing 22,000 human genes was used to identify the gene expression differences. The results showed that there were 1,953 genes showing more than a two-fold difference in expression. Subsequent ontological analysis revealed that a large proportion of the classified genes were related to cell growth, cell signal and cell invasion. Finally, the expression of Caspase-3, Bcl-2, P27, Cdk6 and AMACR, randomly selected genes from microarray data, was validated by RT-PCR and western blot. Collectively, our results first analyzed the gene expression profile in PC-3 cells induced by NKX3.1 and indicated that NKX3.1 might exert its function by regulating the expression of relative genes.  相似文献   

10.
11.
12.
13.
14.
15.
为了鉴定鼠mPC-1基因表达的调控元件,克隆并分析了该基因的启动子.构建了一系列mPC-1基因启动子的截短序列.通过荧光素酶报道基因,分析了它们在前列腺癌细胞和其它细胞中的表达.结果表明,在AR阳性细胞系中,mPC-1基因启动子活性远远高于SV40和p61-PSA 启动子,mPC-1基因启动子 599 bp 至449bp 可能含有一个负调控元件; mPC-1 1.1 kb 启动子控制的表达主要在前列腺癌细胞系中; 雄激素可调控mPC-1 1.1kb 启动子表达.mPC-1 1.1kb 序列是一个有前列腺癌细胞特异性和较强的启动子,经过进一步的修饰有可能作为一种有用的前列腺癌基因治疗元件.  相似文献   

16.
17.
雄激素应答元件假冒DNA对PSA基因启动子的抑制作用   总被引:1,自引:0,他引:1  
研究雄激素应答元件假冒DNA(AREdecoy)对前列腺特异抗原 (PSA)基因启动子的抑制作用 .联合运用报告基因和假冒DNA策略 ,构建了含PSA基因 5′侧启动子区 6 40bpDNA的萤光素酶表达载体pGL3 PSA ,与人工合成的双链硫代ARE假冒DNA共转染前列腺癌细胞株PC3 M并作用不同的时间 (2 4h、4 8h、72h) .应用双萤光素酶测定系统 ,检测萤光素酶的表达活性 .结果显示 :AREdecoyDNA显著抑制报告基因萤光素酶的表达 ,抑制率可达 95 % ,而对照decoyDNA无此作用 .作用不同的时间对萤光素酶活性的抑制无显著性差异  相似文献   

18.
19.
Diminished expression of NKX3.1 is associated with prostate cancer progression in humans, and in mice, loss of nkx3.1 leads to epithelial cell proliferation and altered gene expression patterns. The NKX3.1 amino acid sequence includes multiple potential phosphoacceptor sites for protein kinase CK2. To investigate posttranslational regulation of NKX3.1, phosphorylation of NKX3.1 by CK2 was studied. In vitro kinase assays followed by mass spectrometric analyses demonstrated that CK2 phosphorylated recombinant NKX3.1 on Thr89 and Thr93. Blocking CK2 activity in LNCaP cells with apigenin or 5,6-dichlorobenzimidazole riboside led to a rapid decrease in NKX3.1 accumulation that was rescued by proteasome inhibition. Replacing Thr89 and Thr93 with alanines decreased NKX3.1 stability in vivo. Small interfering RNA knockdown of CK2alpha' but not CK2alpha also led to a decrease in NKX3.1 steady-state level. In-gel kinase assays and Western blot analyses using fractionated extracts of LNCaP cells demonstrated that free CK2alpha' could phosphorylate recombinant human and mouse NKX3.1, whereas CK2alpha' liberated from the holoenzyme could not. These data establish CK2 as a regulator of NKX3.1 in prostate tumor cells and provide evidence for functionally distinct pools of CK2alpha' in LNCaP cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号