首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

2.
Few studies have evaluated elevated CO2 responses of trees in variable light despite its prevalence in forest understories and its potential importance for sapling survival. We studied two shade-tolerant species (Acer rubrum, Cornus florida) and two shade-intolerant species (Liquidambar styraciflua, Liriodendron tulipifera) growing in the understory of a Pinus taeda plantation under ambient and ambient+200 ppm CO2 in a free air carbon enrichment (FACE) experiment. Photosynthetic and stomatal responses to artificial changes in light intensity were measured on saplings to determine rates of induction gain under saturating light and induction loss under shade. We expected that growth in elevated CO2 would alter photosynthetic responses to variable light in these understory saplings. The results showed that elevated CO2 caused the expected enhancement in steady-state photosynthesis in both high and low light, but did not affect overall stomatal conductance or rates of induction gain in the four species. Induction loss after relatively short shade periods (<6 min) was slower in trees grown in elevated CO2 than in trees grown in ambient CO2 despite similar decreases in stomatal conductance. As a result leaves grown in elevated CO2 that maintained induction well in shade had higher carbon gain during subsequent light flecks than was expected from steady-state light response measurements. Thus, when frequent sunflecks maintain stomatal conductance and photosynthetic induction during the day, enhancements of long-term carbon gain by elevated CO2 could be underestimated by steady-state photosynthetic measures. With respect to species differences, both a tolerant, A. rubrum, and an intolerant species, L. tulipifera, showed rapid induction gain, but A. rubrum also lost induction rapidly (c. 12 min) in shade. These results, as well as those from independent studies in the literature, show that induction dynamics are not closely related to species shade tolerance. Therefore, it cannot be concluded that shade-tolerant species necessarily induce faster in the variable light conditions common in understories. Although our study is the first to examine dynamic photosynthetic responses to variable light in contrasting species in elevated CO2, studies on ecologically diverse species will be required to establish whether shade-tolerant and -intolerant species show different photosynthetic responses in elevated CO2 during sunflecks. We conclude that elevated CO2 affects dynamic gas exchange most strongly via photosynthetic enhancement during induction as well as in the steady state. Received: 1 April 1999 / Accepted: 16 August 1999  相似文献   

3.
Gas-exchange measurements were performed to analyze the leaf conductances and assimilation rates of potato (Solanum tuberosum L. cv. Desireé) plants expressing an antisense construct against chloroplastic fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) in response to increasing photon flux densities, different relative air humidities and elevated CO2 concentrations. Assimilation rates (A) and transpiration rates (E) were observed during a stepwise increase of photon flux density. These experiments were carried out under atmospheric conditions and in air containing 500 μmol mol−1 CO2. In both gas atmospheres, two levels of relative air humidity (60–70% and 70–80%) were applied in different sets of measurements. Intercellular CO2 concentration, leaf conductance, air-to-leaf vapour pressure deficit, and instantaneous water-use efficiency (A/E) were determined. As expected, assimilation rates of the FBPase antisense plants were significantly reduced as compared to the wild type. Saturation of assimilation rates in transgenic plants occurred at a photon flux density of 200 μmol m−2 s−1, whereas saturation in wild type plants was observed at 600 μmol m−2 s−1. Elevated ambient CO2 levels did not effect assimilation rates of transgenic plants. At 70–80% relative humidity and atmospheric CO2 concentration the FBPase antisense plants had significantly higher leaf conductances than wild-type plants while no difference emerged at 60–70%. These differences in leaf conductance vanished at elevated levels of ambient CO2. Stomatal response to different relative air humidities was not affected by mesophyll photosynthetic activity. It is suggested that the regulation of stomatal opening upon changes in photon flux density is merely mediated by a signal transmitted from mesophyll cells, whereas the intercellular CO2 concentration plays a minor role in this kind of stomatal response. The results are discussed with respect to stomatal control by environmental parameters and mesophyll photosynthesis. Received: 24 September 1998 / Accepted: 9 February 1999  相似文献   

4.
 To test the hypothesis that the contribution of phosphoribulokinase (PRK) to the control of photosynthesis changes depending on the light environment of the plant, the response of transgenic tobacco (Nicotiana tabacum L.) transformed with antisense PRK constructs to irradiance was determined. In plants grown under low irradiance (330 μmol m−2 s−1) steady-state photosynthesis was limited in plants with decreased PRK activity upon exposure to higher irradiance, with a control coefficient of PRK for CO2 assimilation of 0.25 at and above 800 μmol m−2 s−1. The flux control coefficient of PRK for steady-state CO2 assimilation was zero, however, at all irradiances in plant material grown at 800 μmol m−2 s−1 and in plants grown in a glasshouse during mid-summer (alternating shade and sun 300–1600 μmol m−2 s−1). To explain these differences between plants grown under low and high irradiances, Calvin cycle enzyme activities and metabolite content were determined. Activities of PRK and other non-equilibrium Calvin cycle enzymes fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase and ribulose-1,5-bisphosphate carboxylase-oxygenase were twofold higher in plants grown at 800 μmol m−2 s−1 or in the glasshouse than in plants grown at 330 μmol m−2 s−1. Activities of equilibrium enzymes transketolase, aldolase, ribulose-5-phosphate epimerase and isomerase were very similar under all growth irradiances. The flux control coefficient of 0.25 in plants grown at 330 μmol m−2 s−1 can be explained because low ribulose-5-phosphate content in combination with low PRK activity limits the synthesis of ribulose-1,5-bisphosphate. This limitation is overcome in high-light-grown plants because of the large relative increase in activities of sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase under these conditions, which facilitates the synthesis of larger amounts of ribulose-5-phosphate. This potential limitation will have maintained evolutionary selection pressure for high concentrations of PRK within the chloroplast. Received: 15 November 1999 / Accepted: 27 January 2000  相似文献   

5.
Growth, biomass allocation, and photosynthetic characteristics of seedlings of five invasive non-indigenous and four native species grown under different light regimes were studied to help explain the success of invasive species in Hawaiian rainforests. Plants were grown under three greenhouse light levels representative of those found in the center and edge of gaps and in the understory of Hawaiian rainforests, and under an additional treatment with unaltered shade. Relative growth rates (RGRs) of invasive species grown in sun and partial shade were significantly higher than those for native species, averaging 0.25 and 0.17 g g−1 week−1, respectively, while native species averaged only 0.09 and 0.06 g g−1 week−1, respectively. The RGR of invasive species under the shade treatment was 40% higher than that of native species. Leaf area ratios (LARs) of sun and partial-shade-grown invasive and native species were similar but the LAR of invasive species in the shade was, on average, 20% higher than that of native species. There were no differences between invasive and native species in biomass allocation to shoots and roots, or in leaf mass per area across light environments. Light-saturated photosynthetic rates (Pmax) were higher for invasive species than for native species in all light treatments. Pmax of invasive species grown in the sun treatment, for example, ranged from 5.5 to 11.9 μmol m−2 s−1 as compared with 3.0−4.5 μmol m−2 s−1 for native species grown under similar light conditions. The slope of the linear relationship between Pmax and dark respiration was steeper for invasive than for native species, indicating that invasive species assimilate more CO2 at a lower respiratory cost than native species. These results suggest that the invasive species may have higher growth rates than the native species as a consequence of higher photosynthetic capacities under sun and partial shade, lower dark respiration under all light treatments, and higher LARs when growing under shade conditions. Overall, invasive species appear to be better suited than native species to capturing and utilizing light resources, particularly in high-light environments such as those characterized by relatively high levels of disturbance. Received: 30 December 1997 / Accepted: 1 September 1998  相似文献   

6.
Summary The gas exchange characteristics under steadystate and transient light conditions were determined for a redwood forest understory herb Adenocaulon bicolor, that depends on use of sunflecks for a large fraction of its daily carbon gain. Measurements under steady-state conditions indicated that this species has photosynthetic characteristics that are typical for understory plants. The mean light-saturated assimilation rate was 5.26 mol CO2 m-2 s-1; the light saturation and compensation occurred at 243 and 2 mol photons m-2 s-1, respectively. This light compensation point was much less than the photon flux density under diffuse light in the understory so that positive assimilation could be maintained throughout the day. When leaves that had been in diffuse light for at least 2 h were exposed to a sudden increase in PFD to saturating levels, 10–30 min were required for both assimilation and stomatal conductance to reach maximum values. Calculation of intercellular CO2 pressures, however, suggest that for the first 10 min after the light increase, biochemical factors were responsible for most of the increase in assimilation. Thereafter stomatal opening caused a further increase in assimilation that was no more than 25% of the total. When fully induced leaves were returned to low light, induction was rapidly lost even though stomatal conductance decreased only slowly. This rapid loss of induction limited the capacity of A. bicolor to use sunflecks after low light periods that lasted longer than 1–2 min. However, during periods when sunflecks are more frequent there is probably little loss of induction. Under these conditions, sunflecks are used with high efficiency for assimilation.  相似文献   

7.
Lolium temulentum L. Ba 3081 was grown hydroponically in air (350 μmol mol−1 CO2) and elevated CO2 (700 μmol mol−1 CO2) at two irradiances (150 and 500 μmol m−2 s−1) for 35 days at which point the plants were harvested. Elevated CO2 did not modify relative growth rate or biomass at either irradiance. Foliar carbon-to-nitrogen ratios were decreased at elevated CO2 and plants had a greater number of shorter tillers, particularly at the lower growth irradiance. Both light-limited and light-saturated rates of photosynthesis were stimulated. The amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) protein was increased at elevated CO2, but maximum extractable Rubisco activities were not significantly increased. A pronounced decrease in the Rubisco activation state was found with CO2 enrichment, particularly at the higher growth irradiance. Elevated-CO2-induced changes in leaf carbohydrate composition were small in comparison to those caused by changes in irradiance. No CO2-dependent effects on fructan biosynthesis were observed. Leaf respiration rates were increased by 68% in plants grown with CO2 enrichment and low light. We conclude that high CO2 will only result in increased biomass if total light input favourably increases the photosynthesis-to-respiration ratio. At low irradiances, biomass is more limited by increased rates of respiration than by CO2-induced enhancement of photosynthesis. Received: 23 February 1999 / Accepted: 15 June 1999  相似文献   

8.
The photosynthetic rates and various components of photosynthesis including ribulose-1,5-bisphosphate carboxylase (Rubisco; EC 4.1.1.39), chlorophyll (Chl), cytochrome (Cyt) f, and coupling factor 1 (CF1) contents, and sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity were examined in young, fully expanded leaves of rice (Oryza sativa L.) grown hydroponically under two irradiances, namely, 1000 and 350 μmol quanta · m−2 · s−1, at three N concentrations. The light-saturated rate of photosynthesis measured at 1800 μmol · m−2 · s−1 was almost the same for a given leaf N content irrespective of growth irradiance. Similarly, Rubisco content and SPS activity were not different for the same leaf N content between irradiance treatments. In contrast, Chl content was significantly greater in the plants grown at 350 μmol · m−2 · s−1, whereas Cyt f and CF1 contents tended to be slightly smaller. However, these changes were not substantial, as shown by the fact that the light-limited rate of photosynthesis measured at 350 μmol · m−2 · s−1 was the same or only a little higher in the plants grown at 350 μmol · m−2 · s−1 and that CO2-saturated photosynthesis did not differ between irradiance treatments. These results indicate that growth-irradiance-dependent changes in N partitioning in a leaf were far from optimal with respect to N-use efficiency of photosynthesis. In spite of the difference in growth irradiance, the relative growth rate of the whole plant did not differ between the treatments because there was an increase in the leaf area ratio in the low-irradiance-grown plants. This increase was associated with the preferential N-investment in leaf blades and the extremely low accumulation of starch and sucrose in leaf blades and sheaths, allowing a more efficient use of the fixed carbon. Thus, morphogenic responses at the whole-plant level may be more important for plants as an adaptation strategy to light environments than a response of N partitioning at the level of a single leaf. Received: 23 February 1997 / Accepted: 8 May 1997  相似文献   

9.
In three tropical rain forest light environments in Sabah, Malaysia, we compared photosynthesis in seedlings of ten climax tree species with putatively differing shade tolerances. The objectives of the study were (a) to characterise the range of photosynthetic responses in ten species of the Dipterocarpaceae and (b) to elucidate those photosynthetic characteristics that might provide a basis for niche partitioning. Seedlings were acclimated (c. 7 months) in three light environments; understorey, partial shade and a gap (140 m2). The light environments represented a gradation in median diurnal (0630–1830 hours) photon flux density (PFD) ranging from understorey (4.7 μmol m−2 s−1), through partial shade (21.2 μmol m−2 s−1) to gap (113.7 μmol m−2 s−1). Integrated diurnal PFD were in the sequence gap > partial shade > understorey (15.2, 4.7, 1.3 mol m−2 day−1, respectively). In gap-acclimated plants, species differed in the photosynthetic light-response variables apparent quantum yield, dark respiration rate, light compensation point, net saturated leaf assimilation rate (A sat), and in stomatal conductance (g s sat) when assimilation rate (A) was saturated. A light-demanding pioneer species (Macaranga hypoleuca) and a shade-demanding understorey species (Begonia sp.) had, respectively, higher and lower A sat and g s sat than the dipterocarp species. In high-light conditions A sat and g s sat were strongly positively correlated in dipterocarp species. Differing photosynthetic characteristics of gap-acclimated plants suggest that, in these dipterocarp species, different rates of carbon fixation may be an important factor contributing towards niche partitioning. Mean integrated diurnal A (A diurnal) in the gap, partial shade and understory were, respectively, 122.9, 52.7, 20.5 mmol m−2 day−1. Differences occurred in A diurnal of dipterocarp species between light environments. When Macaranga was included, differences in A diurnal were evident in the gap and partial shade, and in both cases were attributed to the pioneer. For the variable A diurnal, there was of a shift in the rank position of Macaranga among light environments, but a shift did not occur among the dipterocarp species. Results from this study are consistent with the idea that rates of carbon fixation per unit leaf area may contribute towards niche differentiation between the climax and single pioneer species, but not within the group of climax species. Other physiological and/or carbon allocation factors may be involved in any niche partitioning; dipterocarp species often have inherently different growth rates and susceptibility to herbivory. As an alternative to niche partitioning, dipterocarp species may co-exist in natural light environments as a result of habitat disequilibrium or purely stochastic processes. Received: 2 April 1997 / Accepted: 13 July 1997  相似文献   

10.
Arabidopsis thaliana grown in a light regime that included ultraviolet-B (UV-B) radiation (6 kJ m−2 d−1) had similar light-saturated photosynthetic rates but up to 50% lower stomatal conductance rates, as compared to plants grown without UV-B radiation. Growth responses of Arabidopsis to UV-B radiation included lower leaf area (25%) and biomass (10%) and higher UV-B absorbing compounds (30%) and chlorophyll content (52%). Lower stomatal conductance rates for plants grown with UV-B radiation were, in part, due to lower stomatal density on the adaxial surface. Plants grown with UV-B radiation had more capacity to down regulate photochemical efficiency of photosystem II (PSII) as shown by up to 25% lower φPSII and 30% higher non-photochemical quenching of chlorophyll fluorescence under saturating light. These contributed to a smaller reduction in the maximum photochemical efficiency of PSII (F v/F m), greater dark-recovery of F v/F m, and higher light-saturated carbon assimilation and stomatal conductance and transpiration rates after a four-hour high light treatment for plants grown with UV-B radiation. Plants grown with UV-B were more tolerant to a 12 day drought treatment than plants grown without UV-B as indicated by two times higher photosynthetic rates and 12% higher relative water content. UV-B-grown plants also had three times higher proline content. Higher tolerance to drought stress for Arabidopsis plants grown under UV-B radiation may be attributed to both increased proline content and decreased stomatal conductance. Growth of Arabidopsis in a UV-B-enhanced light regime increased tolerance to high light exposure and drought stress.  相似文献   

11.
The effects of temperature on photosynthesis of a rosette plant growing at ground level, Acaena cylindrostachya R. et P., and an herb that grows 20–50 cm above ground level, Senecio formosus H.B.K., were studied along an altitudinal gradient in the Venezuelan Andes. These species were chosen in order to determine – in the field and in the laboratory – how differences in leaf temperature, determined by plant form and microenvironmental conditions, affect their photosynthetic capacity. CO2 assimilation rates (A) for both species decreased with increasing altitude. For Acaena leaves at 2900 m, A reached maximum values above 9 μmol m−2 s−1, nearly twice as high as maximum A found at 3550 m (5.2) or at 4200 m (3.9). For Senecio leaves, maximum rates of CO2 uptake were 7.5, 5.8 and 3.6 μmol m−2 s−1 for plants at 2900, 3550 and 4200 m, respectively. Net photosynthesis-leaf temperature relations showed differences in optimum temperature for photosynthesis (A o.t.) for both species along the altitudinal gradient. Acaena showed similar A o.t. for the two lower altitudes, with 19.1°C at 2900 m and 19.6°C at 3550 m, while it increased to 21.7°C at 4200 m. Maximum A for this species at each altitude was similar, between 5.5 and 6.0 μmol m−2 s−1. For the taller Senecio, A o.t. was more closely related to air temperatures and decreased from 21.7°C at 2900 m, to 19.7°C at 3550 m and 15.5°C at 4200 m. In this species, maximum A was lower with increasing altitude (from 6.0 at 2900 m to 3.5 μmol m−2 s−1 at 4200 m). High temperature compensation points for Acaena were similar at the three altitudes, c. 35°C, but varied in Senecio from 37°C at 2900 m, to 39°C at 3550 m and 28°C at 4200 m. Our results show how photosynthetic characteristics change along the altitudinal gradient for two morphologically contrasting species influenced by soil or air temperatures. Received: 5 July 1997 / Accepted: 25 October 1997  相似文献   

12.
Maroco JP  Edwards GE  Ku MS 《Planta》1999,210(1):115-125
The effects of elevated CO2 concentrations on the photochemistry, biochemistry and physiology of C4 photosynthesis were studied in maize (Zea mays L.). Plants were grown at ambient (350 μL L−1) or ca. 3 times ambient (1100 μL L−1) CO2 levels under high light conditions in a greenhouse for 30 d. Relative to plants grown at ambient CO2 levels, plants grown under elevated CO2 accumulated ca. 20% more biomass and 23% more leaf area. When measured at the CO2 concentration of growth, mature leaves of high-CO2-grown plants had higher light-saturated rates of photosynthesis (ca. 15%), lower stomatal conductance (71%), higher water-use efficiency (225%) and higher dark respiration rates (100%). High-CO2-grown plants had lower carboxylation efficiencies (23%), measured under limiting CO2, and lower leaf protein contents (22%). Activities of a number of C3 and C4 cycle enzymes decreased on a leaf-area basis in the high-CO2-grown plants by 5–30%, with NADP-malate dehydrogenase exhibiting the greatest decrease. In contrast, activities of fructose 1,6-bisphosphatase and ADP-glucose pyrophosphorylase increased significantly under elevated CO2 condition (8% and 36%, respectively). These data show that the C4 plant maize may benefit from elevated CO2 through acclimation in the capacities of certain photosynthetic enzymes. The increased capacity to synthesize sucrose and starch, and to utilize these end-products of photosynthesis to produce extra energy by respiration, may contribute to the enhanced growth of maize under elevated CO2. Received: 30 April 1999 / Accepted: 17 June 1999  相似文献   

13.
Photosynthetic responses to light variation in rainforest species   总被引:1,自引:0,他引:1  
Summary The dependence of net carbon gain during lightflecks (artificial sunflecks) on leaf induction state, lightfleck duration, lightfleck photosynthetic photon flux density (PFD), and the previous light environment were investigated in A. macrorrhiza and T. australis, two Australian rainforest species. The photosynthetic efficiency during lightflecks was also investigated by comparing observed values of carbon gain with predicted values based on steady-state CO2 assimilation rates. In both species, carbon gain and photosynthetic efficiency increased during a series of five 30-or 60-s lightflecks that followed a long period of low light; efficiency was linearly related to leaf induction state.In fully-induced leaves of both species, efficiency decreased and carbon gain increased with lightfleck duration. Low-light grown A. macrorrhiza had greater efficiency than predicted based on steady-state rates (above 100%) for lightflecks less than 40 s long, whereas leaves grown in high light had efficiencies exceeding 100% only during 5-s lightflecks. The efficiency of leaves of T. australis ranged from 58% for 40-s lightflecks to 96% for 5-s lightflecks.In low-light grown leaves of A. macrorrhiza, photosynthetic responses to lightflecks below 120 mol m-2 s-1 were not affected significantly by the previous light level. However, during lightflecks at 530 mol m-2 s-1, net carbon gain and photosynthetic efficiency of leaves previously exposed to low light levels were significantly reduced relative to those of leaves previously exposed to 120 and 530 mol m-2 s-1.These results indicate that, in shade-tolerant species, net carbon gain during sunflecks can be enhanced over values predicted from steady-state CO2 assimilation rates. The degree of enhancement, if any, will depend on sunfleck duration, previous light environment, and sunfleck PFD. In forest understory environments, the temporal pattern of light distribution may have far greater consequences for leaf carbon gain than the total integrated PFD.Supported by National Science Foundation Grant BSR 8217071 and USDA Grant 85-CRCR-1-1620  相似文献   

14.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

15.
Baryla A  Carrier P  Franck F  Coulomb C  Sahut C  Havaux M 《Planta》2001,212(5-6):696-709
Brassica napus L. (oilseed rape) was grown from seeds on a reconstituted soil contaminated with cadmium (100 mg Cd kg−1 dry soil), resulting in a marked chlorosis of the leaves which was investigated using a combination of biochemical, biophysical and physiological methods. Spectroscopic and chromatographic analyses of the photosynthetic pigments indicated that chlorosis was not due to a direct interaction of Cd with the chlorophyll biosynthesis pathway. In addition, mineral deficiency and oxidative stress were apparently not involved in the pigment loss. Leaf chlorosis was attributable to a marked decrease in the chloroplast density caused by a reduction in the number of chloroplasts per cell and a change in cell size, suggesting that Cd interfered with chloroplast replication and cell division. Relatively little Cd was found in the chloroplasts and the properties of the photosynthetic apparatus (electron transport, protein composition, chlorophyll antenna size, chloroplast ultrastructure) were not affected appreciably in plants grown on Cd-polluted soil. Depth profiling of photosynthetic pigments by phase-resolved photoacoustic spectroscopy revealed that the Cd-induced decrease in pigment content was very pronounced at the leaf surface (stomatal guard cells) compared to the leaf interior (mesophyll). This observation was consistent with light transmission and fluorescence microscopy analyses, which revealed that stomata density in the epidermis was noticeably reduced in Cd-exposed leaves. Concomitantly, the stomatal conductance estimated from gas-exchange measurements was strongly reduced with Cd. When plants were grown in a high-CO2 atmosphere (4,000 μl CO2 l−1), the inhibitory effect of Cd on growth was not cancelled, suggesting that the reduced availability of CO2 at the chloroplast level associated with the low stomatal conductance was not the main component of Cd toxicity in oilseed rape. Received: 14 July 2000 / Accepted: 27 August 2000  相似文献   

16.
To examine the effectiveness of super-elevated (10,000 μmol mol−1) CO2 enrichment under cold cathode fluorescent lamps (CCFL) for the clonal propagation of Cymbidium, plantlets were cultured on modified Vacin and Went (VW) medium under 0, 3,000 and 10,000 μmol mol−1 CO2 enrichment and two levels of photosynthetic photon flux density (PPFD, 45 and 75 μmol m−2 s−1). Under high PPFD, 10,000 μmol mol−1 CO2 increased root dry weight and promoted shoot growth. In addition, a decrease in photosynthetic capacity and chlorosis at leaf tips were observed. Rubisco activity and stomatal conductance of these plantlets were lower than those of plantlets at 3,000 μmol mol−1 CO2 under high PPFD, which had a higher photosynthetic capacity. On the other hand, plantlets on Kyoto medium grown in 10,000 μmol mol−1 CO2 under high PPFD had a higher photosynthetic rate than those on modified VW medium; no chlorosis was observed. Furthermore, growth of plantlets, in particular the roots, was remarkably enhanced. This result indicates that a negative response to super-elevated CO2 under high PPFD could be improved by altering medium components. Super-elevated CO2 enrichment of in vitro-cultured Cymbidium could positively affect the efficiency and quality of commercial production of clonal orchid plantlets.  相似文献   

17.
To analyze acclimation of Euterpe edulis seedlings to changes in light availability, we transferred three-year-old seedlings cultivated for six months under natural shade understory [≈ 1.3 mol(photon) m?2 d?1] to a forest gap [≈ 25.0 mol(photon) m?2 d?1]. After the transfer, changes in chlorophyll fluorescence and leaf gas-exchange parameters, as well as in the light-response curves of photosynthesis and photosynthetic induction parameters, were analyzed during the following 110 days. Simultaneously measured photosynthetic characteristics in the shaded seedlings grown in understory served as the control. Despite the fact that the understory seedlings were under suboptimal conditions to achieve their light-saturated net photosynthetic rate (P Nmax), light-response curves and photosynthetic induction parameters indicated that the species had the low respiration rate and a fast opening of stomata in response to the intermittent occurrence of sunflecks, which exerted a feed-forward stimulation on P Nmax. Sudden exposure to high light induced photoinhibition during the first week after the transfer of seedlings to gap, as it was shown by the abrupt decline of the maximal quantum yield of PSII photochemistry (Fv/Fm). The photoinhibition showed the time-dependent dynamics, as the Fv/Fm of the seedlings transferred to the forest gap recovered completely after 110 days. Furthermore, the net photosynthetic rate increased 3.5-fold in relation to priorexposure values. In summary, these data indicated that more than 21 days was required for the shade-acclimated seedlings to recover from photoinhibition and to relax induction photosynthetic limitations following the sudden exposure to high light. Moreover, the species responded very quickly to light availability; it highlights the importance of sunflecks to understory seedlings.  相似文献   

18.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

19.
The mechanisms of capsicum growth in response to differential light availabilities are still not well elucidated. Hereby, we analyzed differential light availabilities on the relationship between stomatal characters and leaf growth, as well as photosynthetic performance. We used either 450–500 μmol m−2 s−1 as high light (HL) or 80–100 μmol m−2 s−1 as low light (LL) as treatments for two different cultivars. Our results showed that the stomatal density (SD) and stomatal index (SI) increased along with the leaf area expansion until the peak of the correlation curve, and then decreased. SD and SI were lower under the LL condition after three days of leaf expansion. For both cultivars, downregulation of photosynthesis and electron transport components was observed in LL-grown plants as indicated by lower light- and CO2-saturated photosynthetic rate (P max and RuBPmax), quantum efficiency of photosystem II (PSII) photochemistry (ΦPSII), electron transport rate (ETR) and photochemical quenching of fluorescence (qp). The observed inhibition of the photosynthesis could be explained by the decrease of SD, SI, Rubisco content and by the changes of the chloroplast. The low light resulted in lower total biomass, root/shoot ratio, and the thickness of the leaf decreased. However, the specific leaf area (SLA) and the content of leaf pigments were higher in LL-treatment. Variations in the photosynthetic characteristics of capsicum grown under different light conditions reflected the physiological adaptations to the changing light environments.  相似文献   

20.
The protective effect of endogenous prostaglandins on the fish gastric mucosa was evaluated by studying the effect of indomethacin and aspirin, known cyclooxigenase inhibitors, on the mucosal ulceration in the isolated gastric sacs of Anguilla anguilla. Gastric sacs devoid of muscle layers were incubated in the presence of indomethacin (10−4 mol · l−1) or aspirin (10−4 mol · l−1) in different experimental conditions. Both the anti-inflammatory drugs produced ulcers, but the effects were more severe in the presence of histamine and in the absence of HCO3 in the incubation bath. The effects of prostaglandin E2 (PGE2) on acid secretion rate (JH) and on alkaline secretion rate (JOH) were evaluated (with the aid of the pH stat method) in isolated gastric mucosa mounted in Ussing chambers. We found that PGE2 (10−8–10−5 mol · l−1) increased JH in a dose-dependent manner. In tissues pretreated with luminal omeprazole (10−4 mol · l−1), PGE2 stimulated gastric alkaline secretion. It was nullified by serosal removal of HCO3 or Na+ and by serosal ouabain (10−4 mol · l−1). These results suggested that prostaglandins also exert their protective effects in fish gastric mucosa. This protection seems partially due to a stimulation of exogenous HCO3 transport from the serosal to the mucosal side. It is likely that this transport is an active transcellular mechanism coupled to Na+ transport. Accepted: 14 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号