首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

2.
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m?2 s?1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m?2 s?1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m?2 s?1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m–2 s–1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21–32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m–2 s–1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition.  相似文献   

3.
Seasonal variability of maximum quantum yield of PSII photochemistry (Fv/Fm) was studied in needles of Taxus baccata seedlings acclimated to full light (HL, 100% solar irradiance), medium light (ML, 18% irradiance) or low light (LL, 5% irradiance). In HL plants, Fv/Fm was below 0.8 (i.e. state of photoinhibition) throughout the whole experimental period from November to May, with the greatest decline in January and February (when Fv/Fm value reached 0.37). In ML seedlings, significant declines of Fv/Fm occurred in January (with the lowest level at 0.666), whereas the decline in LL seedlings (down to 0.750) was not significant. Full recovery of Fv/Fm in HL seedlings was delayed until the end of May, in contrast to ML and LL seedlings. Fv/Fm was significantly correlated with daily mean (T mean), maximal (T max) and minimal (T min) temperature and T min was consistently the best predictor of Fv/Fm in HL and ML needles. Temperature averages obtained over 3 or 5 days prior to measurement were better predictors of Fv/Fm than 1- or 30-day averages. Thus our results indicate a strong light-dependent seasonal photoinhibition in needles of T. baccata as well as suggest a coupling of Fv/Fm to cumulative temperature from several preceding days. The dependence of sustained winter photoinhibition on light level to which the plants are acclimated was further demonstrated when plants from the three light environments were exposed to full daylight over single days in December, February and April and Fv/Fm was followed throughout the day to determine residual sensitivity of electron transport to ambient irradiance. In February, the treatment revealed a considerable midday increase in photoinhibition in ML plants, much less in HL (already downregulated) and none in LL plants. This suggested a greater capacity for photosynthetic utilization of electrons in LL plants and a readiness for rapid induction of photoinhibition in ML plants. Further differences between plants acclimated to contrasting light regimes were revealed during springtime de-acclimation, when short term regeneration dynamics of Fv/Fm and the relaxation of nonphotochemical quenching (NPQ) indicated a stronger persistent thermal mechanism for energy dissipation in HL plants. The ability of Taxus baccata to sustain winter photoinhibition from autumn until late spring can be beneficial for protection against an excessive light occurring together with frosts but may also restrict photosynthetic carbon gain by this shade-tolerant species when growing in well illuminated sites.  相似文献   

4.
The photosynthesis and growth responses of Sargassum thunbergii germlings to different light intensities (10, 60, and 300 μmol photons m?2 s?1) were investigated. Maximum photochemical efficiency (F v/F m), rapid light curves (RLCs), and photochemical and non-photochemical quenching (qP and NPQ) were estimated by a pulse amplitude-modulated fluorometer. The photosynthesis of S. thunbergii germlings exhibited different properties to optimize light capture and utilization. The excitation pressure (1???qP) was rapidly increased to approximately 0.27 showing that germlings responded to high light by chronic photoinhibition with an accumulation of closed reaction centers, which ultimately resulted in a slow growth. This was accompanied by a reduced F v/F m with time and a development of high capacity for NPQ. Although F v/F m in moderate-light germlings did not fully recover overnight, germlings demonstrated a less severe chronic photoinhibition considering the reduced degree of excitation pressure accumulation of approximately 0.15. The relative stability of photosynthetic capacity (rETRmax, E k, and α) could endow germlings with the highest relative growth rate (RGR) of approximately 9.3 % day?1 in moderate light. By contrast, low-light germlings demonstrated high F v/F m and F o, corresponding high α collectively suggested greater efficiency of light absorption and energy transformation. Sustained increases in electron transport capacity (rETRmax and E k) occurred in low-light germlings, which resulted in a stable RGR of over 8.2 % day?1. Consequently, S. thunbergii germlings are considered to prefer low light regimes and have a relative capacity of moderate and high light tolerance. However, the light acclimation to oversaturating conditions is at the cost of slow growth to maintain survival.  相似文献   

5.
The susceptibility to photoinhibition of tree species from three different successional stages were examined using chlorophyll fluorescence and gas exchange techniques. The three deciduous broadleaf tree species were Betula platyphylla var. japonica, pioneer and early successional, Quercus mongolica, intermediate shade‐tolerant and mid‐successional, and Acer mono, shade‐tolerant and late successional. Tree seedlings were raised under three light regimes: full sunlight (open), 10% full sun, and 5% full sun. Susceptibility to photoinhibition was assessed on the basis of the recovery kinetics of the ratio of vaviable to maximum fluorescence (Fv/Fm) of detached leaf discs exposed to about 2000 μmol m?1 s?1 photon flux density (PFD) for 2 h under controlled conditions (25 to 28 °C, fully hydrated). Differences in susceptibility to photodamage among species were not significant in the open and 10% full sun treatments. But in 5% full sun, B. platyphylla sustained a significantly greater photodamage than other species, probably associated with having the lowest photosynthetic capacity indicated by light‐saturated photosynthetic rate (B. platyphylla, 9·87, 5·85 and 2·82; Q. mongolica, 8·05, 6·28 and 4·41; A. mono, 7·93, 6·11 and 5·08 μmol CO2 m?1 s?1for open, 10% and 5% full sun, respectively). To simulate a gap formation and assess its complex effects including high temperature and water stress in addition to strong light on the susceptibility to photoinhibition, we examined photoinhibition in the field by means of monitoring ΔF/Fm on the first day of transfer to natural daylight. Compared with ΔF/Fm in AM, the lower ΔF/Fm in PM responding to lower PFD following high PFD around noon indicated that photoinhibition occurred in plants grown in 10 and 5% full sun. The diurnal changes of ΔF/Fm showed that Q. mongolica grown in 5% full sun was less susceptible to photoinhibition than A. mono although they showed little differences both in photosynthetic capacity in intact leaves and susceptibility to photoinhibition based on leaf disc measurements. These results suggest that shade‐grown Q. mongolica had a higher tolerance for additional stresses such as high temperature and water stress in the field, possibly due to their lower plasticity in leaf anatomy to low light environment.  相似文献   

6.
Soil water and salinity conditions of the riparian zones along the Tarim River, northwest China, have been undergoing alterations due to water use by human or climate change, which is expected to influence the riparian forest dominated by an old poplar, Populus euphratica. To evaluate the effects of such habitat alterations, we examined photosynthetic and growth performances of P. euphratica seedlings across experimental soil water and salinity gradients. Results indicated that seedlings were limited in their physiological performance, as evidenced by decreases in their height and biomass, and the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), the effective quantum-use efficiency of PSII (Fv′/Fm′), and photochemical quenching (qP) under mild (18% soil water content, SWC; 18.3 g kg?1 soil salt content, SSC) and moderate (13% SWC, 22.5 g kg?1 SSC) water or salinity stress. However, seedlings had higher root/shoot ratio (R/S), increased nonphotochemical quenching (NPQ), and water-use efficiency (WUE) relative to control under such conditions. Under severe (8% SWC, 27.9 g kg?1 SSC) water or salinity stress, P. euphratica seedlings had only a fifth of biomass of those under control conditions. It was also associated with damaged PSII and decreases in WUE, the maximal net photosynthetic rate (P Nmax), light-saturation point (LSP), and apparent quantum yield (α). Our results suggested that the soil conditions, where P.euphratica seedlings could grow normally, were higher than ~ 13% for SWC, and lower than ~22.5 g kg?1 for SSC, the values, within the seedlings could acclimate to water or salinity stress by adjusting their R/S ratio, improving WUE to limit water loss, and rising NPQ to dissipate excessive excitation energy. Once SWC was lower than 8% or SCC higher than ~28 g kg?1, the seedlings suffered from the severe stress.  相似文献   

7.
Freezing and thawing of the endemic moss species Grimmia antarctici Card, caused photoinhibition. When snow cover was removed from moss in the field, resulting in exposure to fluctuating temperatures and light conditions, photoinhibition, measured as a reduction in the ratio of variable to maximum chlorophyll a fluorescence (Fv/Fm), was observed. The extent of photoinhibition was highly variable and appeared to be reversible during periods of warmer temperatures. A series of controlled laboratory studies found that the light conditions that prevail between freezing and thawing events influenced the recovery from photoinhibition observed during freezing and thawing, with low light conditions facilitating the greatest rates of recovery. After four cycles of freezing and thawing, recovery from photoinhibition in hydrated moss was achieved within 12 h of transfer to 5°C and 15 μmol quanta m?2 s?1. These results favour the hypothesis that photoinhibition observed during freezing represents a protective process involving the down-regulation of photo-system II when photosynthetic carbon assimilation is limited by low temperatures.  相似文献   

8.
Chronic photoinhibition in seedlings of tropical trees   总被引:1,自引:0,他引:1  
Seedlings of five canopy species of tropical trees from Costa Rica and Puerto Rico were grown in full shade (midday range of photosynthetic photon flux density [PPFD], 100–140 μmol m?2 s?1), partial shade (midday PPFD, 400–600 μmol m?2 s?1) and full sun (midday PPFD, 1 500–1 800 μmol m?2 s?1) for 3 months. The species were Ochroma lagopus (Bombacaceae), a pioneer species; Inga edulis (Fabaceae), found in secondary forest; and Dipteryx panamensis (Fabaceae), Hampea appendiculata (Malvaceae), and Manilkara bidentata (Sapotaceae), three species characteristic of primary forest. After the plants were placed in the dark overnight, chlorophyll fluorescence characteristics were measured for recently expanded and mature leaves. The ratio of variable fluorescence to maximum fluorescence (Fv/Fm) was used to estimate the degree of chronic photoinhibition. Only individuals of one species, Dipteryx panamensis, showed significant depression of Fv/Fm after long-term exposure to full sun. The depression was highly correlated with quantum yield of O2 evolution which also declined after exposure to full sun. The decline may have been related to foliar N concentration. Although all plants were supplied with ample nutrients, foliar N did not increase significantly for Dipteryx seedlings in full sun, whereas it did for Ochroma and Inga. Leaf age affected Fv/Fm only in the cases of Manilkara, where it was slightly lower in recently expanded leaves, and of Dipteryx where it interacted with the effects of light regime. We conclude that chronic photoinhibition is not common in seedlings of canopy trees of tropical rain forests except when availability of mineral nutrients may be limiting.  相似文献   

9.
The responses of photosynthesis to high light and low temperature were studied in vines cultivated in the greenhouse in low light. Exposure to high light (1000 /umol m?2 s?1) or low temperature (5 °C) alone had no measurable effect on the photosynthetic processes, but the combination of high light and low temperature caused rapid loss of photosynthetic capacity and a decrease in the efficiency of photosynthetic energy conversion. After a 15 h exposure to 5°C at high light, the Fv/sb/Fmratio had decreased by 80% and the apparent quantum yield by 75%. Nevertheless, when the leaves were returned to low light at 22°C, these parameters recovered rapidly. The foliar pools of ascorbate and glutathione decreased in the first hours of photoinhibitory treatment while the zeaxanthin content increased from negligible levels to about 50% of the total foliar xanthophyll pool. There was a clear correlation between the zeaxanthin content of the leaves and their Fv/Fm ratio during both photoinhibition and recovery. However, there was also a good correlation between the decrease in theFv Fm ratio and the measured decrease in the total foliar levels of the antioxidants ascorbate and glutathione. The amount of D, protein diminished over the same period as the zeaxanthin levels were increasing. This approach, involving simultaneous measurements of several parameters considered to influence photosystemy II activity, clearly demonstrates that measured decreases in Fv/Fm may not simply be related to zeaxanthin levels or to amounts of D1 protein alone but result from multifactoral influences.  相似文献   

10.
Naramoto  M.  Han  Q.  Kakubari  Y. 《Photosynthetica》2001,39(4):545-552
Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 mol m–2 s–1) to 1 000 mol m–2 s–1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (P Nmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest P Nmax among the three species. The photosynthetic induction period required to reach P Nmax was 3–41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach P Nmax was 2.5–6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 mol m–2 s–1. The induction period was correlated with initial P N and stomatal conductance (g s) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial P N and g s increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in P N and g s at the same background PPFD.  相似文献   

11.
Prior work demonstrated that Heuchera americana, an evergreen herb inhabiting the deciduous forest understory in the southeastern United States, has a 3-4-fold greater photosynthetic capacity under the low-temperature, strong-light, open canopies of winter compared to the high-temperature, weak-light, closed canopies of summer. Moreover, despite the reductions in soil nitrogen, the chilling temperatures, and the increased quantum flux associated with winter, chronic photoinhibition was not observed in this species at this time of the year. We were interested in the photosynthetic acclimation and photoinhibition characteristics of this species when grown under contrasting light and nitrogen regimes. Newly expanded shade-acclimated leaves of forest-grown plants exposed to strong light varying in intensity and duration at 25°C showed a reduction in Fv/Fm (the ratio of variable to maximum room temperature chlorophyll fluorescence measured after dark adaptation), which was correlated with a decline in øa (the intrinsic quantum yield of CO2-saturated O2 evolution on an absorbed light basis). Plants grown in the glasshouse under contrasting light (high and low light; HL and LL, respectively) and nitrogen supply (high and low nitrogen; HN and LN, respectively) regimes showed that photosynthetic acclimation to HL was impaired in LN regimes. The HL-LN plants also had the lowest values of Fv/Fm and of ø on both incident and absorbed light bases and had 50% less chlorophyll (per unit area) compared to plants from other growth regimes. Controlled exposure to bright light at low temperatures (2-3°C) for 3 h resulted in a sharp decrease in Fv/Fm (and rise in Fo, the minimum fluorescence yield) in all plants. Shade-grown plants from both N regimes were highly susceptible to chronic photoinhibition, as indicated by a greater reduction in Fv/Fm and incomplete recovery after 18 h in weak light at 25°C. The HL-HN plants were the least susceptible to chronic photoinhibition, having the smallest decrease in Fv/Fm with near full recovery within 6 h. The decline in Fv/Fm in HL-LN plants was comparable to that of shade-acclimated plants, but recovered fully within 6 h. Low-N plants from both light regimes displayed greater increases in Fo which did not return to pretreatment levels after 18 h of recovery. These studies indicate that HL-LN plants were sensitive to chronic photoinhibition and, at the same time, had a high capacity for dynamic photoinhibition. Experimental garden studies showed that H. americana grown in an open field in summer were photoinhibited and did not fully recover overnight or during extended periods of weak light. These results are discussed in relation to the photosynthetic acclimation of H. americana under natural conditions.  相似文献   

12.
Recovery from 60 min of photoinhibitory treatment at photosynthetic photon flux densities of 500, 1400 and 2200 μMmol m?2 s? was followed in cells of the green alga Chlamydomonas reinhardtii grown at 125 μMmol m?2 s?1. These light treatments represent photoregulation, moderate photoinhibition and strong photoinhibition, respectively. Treatment in photoregulatory light resulted in an increased maximal rate of oxygen evolution (Pmax) and an increased quantum yield (Φ), but a 15% decrease in Fv/FM. Treatment at moderately photoinhibitory light resulted in a 30% decrease in Fv/FM and an approximately equal decrease in Φ. Recovery in dim light restored Fv/FM within 15 and 45 min after high light treatment at 500 and 1400 μMmol m?2 s?1, respectively. Convexity (Θ), a measure of the extent of co-limitation between PS II turnover and whole-chain electron transport, and Φ approached, but did not reach the control level during recovery after exposure to 1400 μMmol m?2 s?1, whereas Pmax increased above the control. Treatment at 2200 μMmol m?2 s?1 resulted in a strong reduction of the modeled parameters Φ, Θ and Pmax. Subsequent recovery was initially rapid but the rate decreased, and a complete recovery was not reached within 120 min. Based on the results, it is hypothesized that exposure to high light results in two phenomena. The first, expressed at all three light intensities, involves redistribution within the different aspects of PS II heterogeneity rather than a photoinhibitory destruction of PS II reaction centers. The second, most strongly expressed at 2200 μmol m?2 s?1, is a physical damage to PS II shown as an almost total loss of PS IIα and PS II QB-reducing centers. Thus recovery displayed two phase, the first was rapid and the only visible phase in algae exposed to 500 and 1400 μmol m?2 s?1. The second phase was slow and visible only in the later part of recovery in cells exposed to 2200 μmol m?2 s?1.  相似文献   

13.
We aimed to find out relations among nonphotochemical quenching (NPQ), gross photosynthetic rate (P G), and photoinhibition during photosynthetic light induction in three woody species (one pioneer tree and two understory shrubs) and four ferns adapted to different light regimes. Pot-grown plants received 100% and/or 10% sunlight according to their light-adaptation capabilities. After at least four months of light acclimation, CO2 exchange and chlorophyll fluorescence were measured simultaneously in the laboratory. We found that during light induction the formation and relaxation of the transient NPQ was closely related to light intensity, light-adaption capability of species, and P G. NPQ with all treatments increased rapidly within the first 1–2 min of the light induction. Thereafter, only species with high P G and electron transport rate (ETR), i.e., one pioneer tree and one mild shade-adapted fern, showed NPQ relaxing rapidly to a low steady-state level within 6–8 min under PPFD of 100 μmol(photon) m?2 s?1 and ambient CO2 concentration. Leaves with low P Gand ETR, regardless of species characteristics or inhibition by low CO2 concentration, showed slow or none NPQ relaxation up to 20 min after the start of low light induction. In contrast, NPQ increased slowly to a steady state (one pioneer tree) or it did not reach the steady state (the others) from 2 to 30 min under PPFD of 2,000 μmol m?2 s?1. Under high excess of light energy, species adapted to or plants acclimated to high light exhibited high NPQ at the initial 1 or 2 min, and showed low photoinhibition after 30 min of light induction. The value of fastest-developing NPQ can be quickly and easily obtained and might be useful for physiological studies.  相似文献   

14.
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m?2 d?1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m?2 d?1 (by rotation out of direct irradiance) to 79 mol photons m?2 d?1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L?1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m?2 s?1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L?1), the culture was irradiated up to 2,000 μmol photons m?2 s?1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons?1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.  相似文献   

15.
The physiological response of leaves developed in low light (L) on Fagus crenata seedlings exposed to different levels of high light (H: high light, M: medium light) was studied. Measurements were conducted on potted seedlings in the F. crenata forest understory. The seedlings with leaves developed in L were transferred to H (L–H) and M (L–M) in summer. On exposure to high light, the photochemical efficiency of dark-adapted PSII (Fv/Fm) immediately decreased and was followed by a subsequent recovery in both L–H and L–M leaves. The mean value of Fv/Fm in L–H leaves was lower than that in L–M leaves through experiments, indicating that the degree of photoinhibition in L–H leaves was greater than that in L–M leaves. About 1 month after transfer, 37% and 5% of leaves had fallen in L–H and L–M seedlings, respectively. This result also indicated the greater photoinhibition in L–H leaves. Moreover, the photosynthetic capacity (PNmax) of L–H leaves decreased. In contrast, the PNmax of L–M leaves increased, although the PNmax was lower than that of M control leaves. An increase in the xanthophyll cycle pool (VAZ), indicating an increase of the photoprotective function, was found in both L–H and L–M leaves. Especially, the VAZ pool in L–M leaves was higher than that in M leaves by the end of experiments. L–M leaves may avoid photoinhibition effectively by the decrease in excess light with the increase of the PNmax or VAZ pool, compared to L–H leaves. Thus, the physiological acclimation on exposure to high light depended on the degree of high light. To achieve successful photosynthetic acclimation with slight photoinhibition, the variation of light intensity before and after exposure to high light would be an important factor because of the difference in excess light.  相似文献   

16.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

17.
The survivorship of dipterocarp seedlings in the deeply shaded understorey of South‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. To investigate the effect of elevated CO2 upon photosynthesis and growth under sunflecks, seedlings of Shorealeprosula were grown in controlled environment conditions at ambient or elevated CO2. Equal total daily photon flux density (PFD) (~7·7 mol m?2 d?1) was supplied as either uniform irradiance (~170 µmol m?2 s?1) or shade/fleck sequences (~30 µmol m?2 s?1/~525 µmol m?2 s?1). Photosynthesis and growth were enhanced by elevated CO2 treatments but lower under flecked irradiance treatments. Acclimation of photosynthetic capacity occurred in response to elevated CO2 but not flecked irradiance. Importantly, the relative enhancement effects of elevated CO2 were greater under sunflecks (growth 60%, carbon gain 89%) compared with uniform irradiance (growth 25%, carbon gain 59%). This was driven by two factors: (1) greater efficiency of dynamic photosynthesis (photosynthetic induction gain and loss, post‐irradiance gas exchange); and (2) photosynthetic enhancement being greatest at very low PFD. This allowed improved carbon gain during both clusters of lightflecks (73%) and intervening periods of deep shade (99%). The relatively greater enhancement of growth and photosynthesis at elevated CO2 under sunflecks has important potential consequences for seedling regeneration processes and hence forest structure and composition.  相似文献   

18.
Serret  M.D.  Trillas  M.I.  Matas  J.  Araus  J.L. 《Photosynthetica》2001,39(2):245-255
We studied the relationships between the degree of photoautotrophy, photosynthetic capacity, and extent of photoinhibition of Gardenia jasminoides Ellis plantlets in vitro. Two successive micropropagation stages (shoot multiplication and root induction), and three culture conditions [tube cap closure, photosynthetic photon flux density (PPFD), and sucrose concentration] which may influence the development of photoautotrophy in vitro were assayed. The ratios of variable chlorophyll fluorescence to either maximal (Fv/Fm) or ground (Fv/F0) values were low, irrespective of the culture stage or growing conditions. Incomplete development of the photosynthetic apparatus and permanent photoinhibition may be involved. However, Fv/Fm and Fv/F0 increased from shoot multiplication to root induction owing to a decrease in F0 and an increase in Fm. This suggests that photoinhibition decreases later during micropropagation, when the photoautotrophy of plantlets is more advanced. The low sucrose content and high PPFD increased the photoinhibition of plantlets, whereas growth in tubes with permeable caps showed the opposite effect. The only culture factor with a significant (positive) effect on maximum photosynthetic rate (P max) was PPFD. At shoot multiplication net photosynthetic rate (P N) was positively correlated with the half time of the increase from F0 to Fm (t1/2). Such association may be mainly due to a common response of both traits to higher PPFD in culture. Within each culture stage, no relationship was observed between P N and the degree of photoautotrophy, which was positively correlated with Fv/Fm and Fv/F0 during root induction. During shoot multiplication, these correlations were not significant, or were even negative. Hence during the last stage of micropropagation, plantlets with a higher degree of photoautotrophy are less photoinhibited, whereas they do not follow this pattern at the earlier stage.  相似文献   

19.
The sudden increase in irradiance after canopy disturbance in primary forest together with the accompanying increase in leaf temperatures is known to cause photoinhibition in shade acclimated foliage of understorey plants. We hypothesized that there is species specific variation among understorey saplings in the magnitude of photoinhibition in response to gap creation, which is related to their requirement for overstorey disturbance. Eleven more or less circular gaps were created varying in size from 60 up to 1459 m2. Photoinhibition was assessed by determining predawn and midday Fv/Fm using chlorophyll fluorescence at two occasions during the first 3 weeks after creation of the gaps. The light environment was assessed using hemispherical photography. Five species that occurred in sufficient numbers in the understorey after gap creation were measured. They all showed an increase of photoinhibition with increasing gap size. Variation in exposure to direct sunlight within gaps contributed also to variation in photoinhibition. Dynamic photoinhibition, the overnight increase in Fv/Fm, was about 20% of total photoinhibition as measured at midday. The species responded quantitatively different. Oxandra asbeckii was most sensitive as evident from a decrease of predawn Fv/Fm from 0.79 in the understorey of undisturbed forest to 0.70 in the smallest and further to 0.41 in the largest gaps. Catostemma fragrans, the least sensitive species showed hardly any photoinhibition in the smallest gaps and less in the largest ones, whereas Lecythis concertiflora, Licania heteromorpha, and Chlorocardium rodiei had intermediate responses. Species rank order in sensitivity to photoinhibition was maintained across the whole range of gap sizes. The relationship between sensitivity to photoinhibition and species-specific gap size preference for regeneration is discussed.  相似文献   

20.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号