首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
应用5'-RACE方法克隆到烟草NTHK2的全长cDNA.其全长cDNA共有3 216bp,其中5'非编码区为509bp,3'非编码区为427bp,编码区为2 280bp,编码产物为760个氨基酸.NTHK2氨基酸序列与植物中的许多杂合型的两组分乙烯受体基因有较高的同源性,具有推测的组氨酸激酶结构域和接受域;但是,在激酶结构域中没有保守的组氨酸,而是被一个天冬氨酸残基所替代.为了研究其生化特性,在酵母中以融合蛋白的形式表达了激酶结构域.体外激酶分析表明,当有Mg2+存在的情况下NTHK2能够自我磷酸化.进一步的研究应阐明NTHK2在植物体内是否能够作为乙烯受体,参与乙烯的信号传导过程.  相似文献   

2.
A putative ethylene receptor gene NTHK1 encodes a protein with a putative signal peptide, three transmembrane segments, a putative histidine kinase domain and a putative receiver domain. The receiver domain was expressed in an Escherichia coli expression system, purified and used to generate polyclonal antibodies for immunohistochemistry analysis. The spatial expression of the NTHK1 protein was then investigated. We found that NTHK1 was abundant during flower and ovule development. It was also expressed in glandular hairs, stem, and in leaves that had been wounded. The NTHK1 gene was further introduced into the tobacco plant and we found that, in different transgenic lines, the NTHK1 gene was transcribed to various degrees. Upon ACC treatment, the etiolated transgenic seedlings showed reduced ethylene sensitivity when compared with the control, indicating that NTHK1 is a functional ethylene receptor in plants.  相似文献   

3.
应用5′-ARCE方法克隆到烟草NTHK2的全长cDNA。其全长cDNA共有3216bp,其中5′非编码区为509bp,3′非编码区为427bp,编码区为2280bp,编码产物为760个氨基酸。NTHK2氨基酸序列与植物中的许多杂合型的两组分乙烯受体基因有较高的同源性,具有推测的组氨酸激酶结构域和接受域。但是,在激酶结构域中没有保守的组氨酸,而是被一个天冬氨酸残基所替代。为了研究其生化特性,在酵母中以融合蛋白的形式表达了激酶结构域,体外激酶分析表明,当有Mg^2 存在的情况下NTHK2能够自我磷酸化。进一步的研究应阐明NTHK2在植物体内是否能够作为乙烯受体。参与乙烯的信号传导过程。  相似文献   

4.
Ethylene plays important roles in plant growth, development and stress responses. Its receptor genes have been studied in dicots such asArabidopsis, tobacco and tomato. However, no research has been reported for the ethylene receptors from monocots currently. In the present study, we cloned an ethylene receptor geneOSPK2 from rice and found that its encoded protein was divergent from the ethylene receptors from dicots. OSPK2 had a long extension in its N-terminal, followed by three transmembrane segments, a GAF domain, a putative kinase domain and a putative receiver domain. Although most of the domains were conserved, the expected phosphorylation site His and the phosphate receiver Asp have been replaced by Gln and Asn, respectively. This fact indicates that OSPK2 may not function as a histidine kinase in a phosphorelay manner, but rather play roles by other mechanism, probably through Ser/Thr kinase activity. The expression of theOSPK2 gene was investigated by RT-PCR method under different conditions. We found that this gene was apparently induced by wounding and PEG treatment, but not significantly affected by salt and ABA treatments. The differential expression of theOSPK2 gene may reflect its roles in mediating different abiotic stress responses, consistent with our previous studies on tobacco ethylene receptors.  相似文献   

5.
Zhou HL  Cao WH  Cao YR  Liu J  Hao YJ  Zhang JS  Chen SY 《FEBS letters》2006,580(5):1239-1250
Ethylene receptors sense ethylene and regulate downstream signaling events. Tobacco ethylene receptor NTHK1, possessing Ser/Thr kinase activity, has been found to function in plant growth and salt-stress responses. NTHK1 contains transmembrane domains, a GAF domain, a kinase domain and a receiver domain. We examined roles of these domains in regulation of plant leaf growth, salt-stress responses and salt-responsive gene expressions using an overexpression approach. We found that the transgenic Arabidopsis plants harboring the transmembrane domain plus kinase domain exhibited large rosettes, had reduction in ethylene sensitivity, and showed enhanced salt sensitivity. The transgenic plants harboring the transmembrane domain plus GAF domain also showed larger rosettes. Truncations of NTHK1 affected salt-induced gene expressions. Transmembrane domain plus kinase domain promoted RD21A and VSP2 expression but decreased salt-induction of AtNAC2. The kinase domain itself promoted AtERF4 gene expression. The GAF domain itself enhanced Cor6.6 induction. Moreover, the NTHK1 functional kinase domain phosphorylated the HIS and ATP subdomains, and five putative phosphorylation sites were identified in these two subdomains. In addition, the salt-responsive element of the NTHK1 gene was in the transmembrane-coding region but not in the promoter region. These results indicate that NTHK1 domains or combination of them have specific functions in plant leaf growth, salt-stress response, gene expression and protein phosphorylation.  相似文献   

6.
A histidine kinase-based signaling system has been proposed to function in ethylene signal transduction pathway of plants and one ethylene receptor has been found to possess His kinase activity. Here we demonstrate that a His kinase-like ethylene receptor homologue NTHK1 from tobacco has serine/threonine (Ser/Thr) kinase activity, but no His kinase activity. Evidence obtained by analyzing acid/base stability, phosphoamino acid and substrate specificity of the phosphorylated kinase domain, supports this conclusion. In addition, mutation of the presumptive phosphorylation site His (H378) to Gln did not affect the kinase activity whereas deletion of the ATP-binding domain eliminated it, indicating that the conserved His (H378) is not required for the kinase activity and this activity is intrinsic to the NTHK1-KD. Moreover, confocal analysis of NTHK1 expression in insect cells and plant cells suggested the plasma membrane localization of the NTHK1 protein. Thus, NTHK1 may represent a distinct Ser/Thr kinase-type ethylene receptor and function in an alternative mechanism for ethylene signal transduction.  相似文献   

7.
Prokaryotes and eukaryotes respond to various environmental stimuli using the two-component system (TCS). Essentially, it consists of membrane-bound histidine kinase (HK) which senses the stimuli and further transfers the signal to the response regulator, which in turn, regulates expression of various target genes. Recently, sequence-based genome wide analysis has been carried out in Arabidopsis and rice to identify all the putative members of TCS family. One of the members of this family i.e. AtHK1, (a putative osmosensor, hybrid-type sensory histidine kinase) is known to interact with AtHPt1 (phosphotransfer proteins) in Arabidopsis. Based on predicted rice interactome network (PRIN), the ortholog of AtHK1 in rice, OsHK3b, was found to be interacting with OsHPt2. The analysis of amino acid sequence of AtHK1 showed the presence of transmitter domain (TD) and receiver domain (RD), while OsHK3b showed presence of three conserved domains namely CHASE (signaling domain), TD, and RD. In order to elaborate on structural details of functional domains of hybrid-type HK and phosphotransfer proteins in both these genera, we have modeled them using homology modeling approach. The structural motifs present in various functional domains of the orthologous proteins were found to be highly conserved. Binding analysis of the RD domain of these sensory proteins in Arabidopsis and rice revealed the role of various residues such as histidine in HPt protein which are essential for their interaction.  相似文献   

8.
Characterization of an ethylene receptor homolog gene from rice   总被引:1,自引:0,他引:1  
Ethylene is a gaseous hormone and plays important roles in plant growth and development, including seed germination, root hair development, flowering, pollination, abscission, and fruit ripening[1]. It is also involved in plant responses to biotic stress such as pathogen attack, and abiotic stresses such as wounding, drought and freezing[1]. Mutational and genetic analysis of Arabidopsis has led to the identification of five ethylene receptor genes, i.e. ETR1, ERS1, ETR2, EIN4 and ERS2. …  相似文献   

9.
The mechanisms that control the wound-induced expression of the prxC2 gene for horseradish peroxidase (HRP) have been investigated. Analysis of the regulatory properties of 5′-deleted promoters showed that a positive element involved in the response to wounding was located between −307 and −99 bp from the site of initiation of translation. In in vitro binding assays of tobacco nuclear proteins and DNA fragments of prxC2 promoter, the binding site was the Box 1 from −296 to −283 containing the CACGTG motif. To identify the functional role of Box 1, the prxC2 promoter that has been digested from the 5′ end to −289 with a disrupted Box 1 was fused to a reporter gene for β-glucuronidase (GUS). No induction of GUS activity was observed in transgenic tobacco plants with the prxC2(−289)/GUS construct. These data indicated that the expression of prxC2 in response to wounding required the Box 1 sequence from −296 to −283. Furthermore, a tobacco cDNA expression library was screened and a cDNA clone for a protein, designated TFHP-1, that bound specifically to the Box 1 sequence was identified. The putative TFHP-1 protein contains a basic region and leucine zipper (bZip) motif and a helix—loop—helix (HLH) motif. The mRNA for TFHP-1 was abundant in roots and stems, and it was not induced by wounding in leaves. In tobacco protoplasts, antisense TFHP-1 suppressed the expression of prxC2 (−529)/GUS.  相似文献   

10.
The unorthodox two-component sensor protein BvgS ofBordetella pertussis contains several interesting sequence motifs of unknown functional relevance, such as a histidine motif in its output domain, which is conserved among several unorthodox sensor proteins, a putative nucleotide binding site [Walker box type A] in its linker region, and a region in its periplasmic domain with significant homology to the TonB protein ofEscherichia coli. We investigated potential functions of these sequences by constructingB. pertussis strains that express mutant BvgS derivatives. The His1172 residue in the output domain was exchanged for Gln, and the Walker motif was mutated either by the replacement of Lys625 by Arg, or of Gly624 by Val and Lys625 by Leu. To analyse the TonB motif, the periplasmic domain of BvgS was replaced with the corresponding domain of EvgS, anE. coli sensor that is highly homologous to BvgS but lacks the similarity with TonB. All mutations except the conservative Lys/Arg exchange in the Walker box caused the inactivation of BvgS, indicating the functional importance of the conserved motifs. The activity of the mutant proteins could be restored by complementation in trans with various separately expressed, truncated parts of BvgS. Mutations in the BvgS receiver domain could be complemented not only by a construct expressing the wild-type receiver and output domains, but also by the derivative containing the His-Gln exchange. Therefore, the histidine motif, although important for BvgS function, is not essential for complementation of BvgS mutants. The mutations in the Walker box and in the periplasmic domain could be complemented by a truncated BvgS derivative lacking the receiver and output domains. The characterization of a spontaneous revertant of the strain expressing the originally inactive EvgS/BvgS hybrid protein revealed the presence of a mutation in the BvgS linker region, conferring constitutive activity on the protein. As TonB energizes transport processes across the outer membrane ofE. coli, the strain expressing the constitutive EvgS/BvgS hybrid protein lacking the TonB motif was used in preliminary investigations of a possible direct involvement of BvgS in transport processes.  相似文献   

11.
We studied the local response to wounding in Arabidopsis thaliana leaves using a two-step microarray analysis. A microarray containing 3500 cDNA clones was first screened to enrich for genes affected by wounding in the immediate vicinity of the wound (4 h post wounding). 359 non-redundant putative wound responsive genes were then spotted on a smaller wound-response array for detailed analysis of spatial expression (local, adjacent and systemic), timing of expression (0.5, 4, 8, 17 h), and effect of hormone treatments (methyl jasmonate, ethylene and abscisic acid). Our results show that genes that respond early at the site of the wound also respond throughout the plant, with similar kinetics. Early-induced genes which respond systemically encode predominantly signal transduction and regulatory factors (36%), and the expression of many of them is also controlled by methyl jasmonate (about 35% of the 36%). Genes specific to the wound site and the wounded leaf have a slower response to wounding and are mainly metabolic genes. At the wound, many genes of the lignin biosynthesis pathway were induced. In silico analysis of the 5′ promoter regions of genes affected by wounding revealed G-box-related motifs in a significant proportion of the promoters. These results show that the establishment of a systemic response to wounding is a priority for the plant, and that the local response at the wound site is established later. Ethylene and abscisic acid are involved in the local response, regulating repression of photosynthetic genes and expression of drought responsive genes respectively.  相似文献   

12.
A cDNA encoding a putative RNA-binding glycine-rich protein, SCRGP-1, was isolated from the wild potato species Solanum commersonii. The amino acid sequence of the deduced protein revealed that the protein contains a consensus RNA-binding domain and has a glycine-rich carboxy-terminal domain. The corresponding gene is induced by low temperature, ABA, wounding, and drought in both Solanum commersonii and Solanum tuberosum. The response of this putative RNA-binding protein gene to low temperature and ABA treatments in Solanum sp. suggests that the SCRGP-1 protein might participate in the adaptation process leading to increased freezing tolerance.  相似文献   

13.
14.
15.
The AtoS–AtoC two-component signal transduction system positively regulates the expression of the atoDAEB operon in Escherichia coli. Upon acetoacetate induction, AtoS sensor kinase autophosphorylates and subsequently phosphorylates, thereby activating, the response regulator AtoC. In a previous work we have shown that AtoC is phosphorylated at both aspartate 55 and histidine73. In this study, based on known three-dimensional structures of other two component regulatory systems, we modeled the 3D-structure of the receiver domain of AtoC in complex with the putative dimerization/autophosphorylation domain of the AtoS sensor kinase. The produced structural model indicated that aspartate 55, but not histidine 73, of AtoC is in close proximity to the conserved, putative phosphate-donor, histidine (H398) of AtoS suggesting that aspartate 55 may be directly involved in the AtoS–AtoC phosphate transfer. Subsequent biochemical studies with purified recombinant proteins showed that AtoC mutants with alterations of aspartate 55, but not histidine 73, were unable to participate in the AtoS–AtoC phosphate transfer in support of the modeling prediction. In addition, these AtoC mutants displayed reduced DNA-dependent ATPase activity, although their ability to bind their target DNA sequences in a sequence-specific manner was found to be unaltered.  相似文献   

16.
17.
18.
Farnesoic acid O‐methyl transferase (FAMeT) is the enzyme involved in the penultimate step of insect juvenile hormone (JH) biosynthesis and is thus a key regulator in insect development and reproduction. We report the characterization of the putative‐FAMeT in the medfly or Mediterranean fruit fly, Ceratitis capitata. This gene was identified by suppressive subtractive hybridization and completely sequenced by the screening of a medfly cDNA library. The obtained sequence was analyzed for conserved protein domain identification and its expression profile was evaluated by quantitative Real‐Time PCR in medfly pre‐imaginal life. The tissue expression of the isolated gene was verified by in situ hybridization on third instar larvae sections. The characterization of the isolated gene pointed out several typical features of methyl transferase genes. The pre‐imaginal putative‐FAMeT expression levels were consistent with JH titer change in Diptera. As recognized in some crustaceans, this gene seems to be widely expressed in the medfly as well. Ceratitis capitata is one of the most relevant agricultural pests against which insecticides and the sterile insect technique (SIT) are extensively used in spite of the well‐known limitations of these approaches. Although results are not conclusive for the physiological role of the isolated gene, they suggest the characterization of a new gene in the Mediterranean fruit fly potentially involved in JH biosynthesis and may, therefore, have implications for pest control. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号