首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多肽噬菌体展示   总被引:4,自引:2,他引:2  
噬菌体展示技术已被广泛地应用于生物学研究的各个方面.利用它可融合表达多肽、蛋白质结构域和蛋白质.尤其是多肽噬菌体展示,已被作为一种便利的研究工具去发现和研究那些与受体、酶、凝集素、抗体、核酸以及其他生物分子亲和的多肽配基和酶的底物专一性,该技术在药物的发现,疫苗的设计等医学领域也有着潜在的应用价值.  相似文献   

2.
Moon SA  Ki MK  Lee S  Hong ML  Kim M  Kim S  Chung J  Rhee SG  Shim H 《Molecules and cells》2011,31(6):509-513
Target-specific antibodies can be rapidly enriched and identified from an antibody library using phage display. Large, naïve antibody libraries derived from synthetic or unimmunized sources can yield antibodies against virtually any antigen, whereas libraries from immunized sources tend to be smaller and are used exclusively against the antigen of immunization. In this study, 25 scFv libraries made from the spleens of immunized rabbits, each with a size ranging from 108 to higher than 109, were combined into a single large library with > 1010 individual clones. Panning of this combined library yielded target-specific rabbit scFv clones against many non-immunizing antigens, including proteins, peptides, and a small molecule. Notably, specific scFv clones against a rabbit self-antigen (rabbit serum albumin) and a phosphorylated protein (epidermal growth factor receptor pTyr1173) could be isolated from the library. These results suggest that the immune library contained a significant number of unimmunized clones and that a sufficiently large immune library can be utilized similarly to a naïe library, i.e., against various non-immunizing antigens to yield specific antibodies.  相似文献   

3.
Phage display, one of today’s fundamental drug discovery technologies, allows identification of a broad range of biological drugs, including peptides, antibodies and other proteins, with the ability to tailor critical characteristics such as potency, specificity and cross-species binding. Further, unlike in vivo technologies, generating phage display-derived antibodies is not restricted by immunological tolerance. Although more than 20 phage display-derived antibody and peptides are currently in late-stage clinical trials or approved, there is little literature addressing the specific challenges and successes in the clinical development of phage-derived drugs. This review uses case studies, from candidate identification through clinical development, to illustrate the utility of phage display as a drug discovery tool, and offers a perspective for future developments of phage display technology.  相似文献   

4.
Background: Development of functional monoclonal antibodies against intractable GPCR targets.Results: Identification of structured peptides mimicking the ligand binding site, their use in panning to enrich for a population of binders, and the subsequent challenge of this population with receptor overexpressing cells leads to functional monoclonal antibodies.Conclusion: The combination of techniques provides a successful strategic approach for the development of functional monoclonal antibodies against CXCR2 in a relatively small campaign.Significance: The presented combination of techniques might be applicable for other, notoriously difficult, GPCR targets.Summary: The CXC chemokine receptor-2 (CXCR2) is a member of the large ‘family A’ of G-protein-coupled-receptors and is overexpressed in various types of cancer cells. CXCR2 is activated by binding of a number of ligands, including interleukin 8 (IL-8) and growth-related protein α (Gro-α). Monoclonal antibodies capable of blocking the ligand-receptor interaction are therefore of therapeutic interest; however, the development of biological active antibodies against highly structured GPCR proteins is challenging. Here we present a combination of techniques that improve the discovery of functional monoclonal antibodies against the native CXCR2 receptor.The IL-8 binding site of CXCR2 was identified by screening peptide libraries with the IL-8 ligand, and then reconstructed as soluble synthetic peptides. These peptides were used as antigens to probe an antibody fragment phage display library to obtain subpopulations binding to the IL-8 binding site of CXCR2. Further enrichment of the phage population was achieved by an additional selection round with CXCR2 overexpressing cells as a different antigen source. The scFvs from the CXCR2 specific phage clones were sequenced and converted into monoclonal antibodies. The obtained antibodies bound specifically to CXCR2 expressing cells and inhibited the IL-8 and Gro-α induced ß-arrestin recruitment with IC50 values of 0.3 and 0.2 nM, respectively, and were significantly more potent than the murine monoclonal antibodies (18 and 19 nM, respectively) obtained by the classical hybridoma technique, elicited with the same peptide antigen. According to epitope mapping studies, the antibody efficacy is largely defined by N-terminal epitopes comprising the IL-8 and Gro-α binding sites. The presented strategic combination of in vitro techniques, including the use of different antigen sources, is a powerful alternative for the development of functional monoclonal antibodies by the classical hybridoma technique, and might be applicable to other GPCR targets.  相似文献   

5.
《MABS-AUSTIN》2013,5(6):1415-1424
Background: Development of functional monoclonal antibodies against intractable GPCR targets.

Results: Identification of structured peptides mimicking the ligand binding site, their use in panning to enrich for a population of binders, and the subsequent challenge of this population with receptor overexpressing cells leads to functional monoclonal antibodies.

Conclusion: The combination of techniques provides a successful strategic approach for the development of functional monoclonal antibodies against CXCR2 in a relatively small campaign.

Significance: The presented combination of techniques might be applicable for other, notoriously difficult, GPCR targets.

Summary: The CXC chemokine receptor-2 (CXCR2) is a member of the large ‘family A’ of G-protein-coupled-receptors and is overexpressed in various types of cancer cells. CXCR2 is activated by binding of a number of ligands, including interleukin 8 (IL-8) and growth-related protein α (Gro-α). Monoclonal antibodies capable of blocking the ligand-receptor interaction are therefore of therapeutic interest; however, the development of biological active antibodies against highly structured GPCR proteins is challenging. Here we present a combination of techniques that improve the discovery of functional monoclonal antibodies against the native CXCR2 receptor.

The IL-8 binding site of CXCR2 was identified by screening peptide libraries with the IL-8 ligand, and then reconstructed as soluble synthetic peptides. These peptides were used as antigens to probe an antibody fragment phage display library to obtain subpopulations binding to the IL-8 binding site of CXCR2. Further enrichment of the phage population was achieved by an additional selection round with CXCR2 overexpressing cells as a different antigen source. The scFvs from the CXCR2 specific phage clones were sequenced and converted into monoclonal antibodies. The obtained antibodies bound specifically to CXCR2 expressing cells and inhibited the IL-8 and Gro-α induced ß-arrestin recruitment with IC50 values of 0.3 and 0.2 nM, respectively, and were significantly more potent than the murine monoclonal antibodies (18 and 19 nM, respectively) obtained by the classical hybridoma technique, elicited with the same peptide antigen. According to epitope mapping studies, the antibody efficacy is largely defined by N-terminal epitopes comprising the IL-8 and Gro-α binding sites. The presented strategic combination of in vitro techniques, including the use of different antigen sources, is a powerful alternative for the development of functional monoclonal antibodies by the classical hybridoma technique, and might be applicable to other GPCR targets.  相似文献   

6.
Phage display technologies have been increasingly utilized for the generation of therapeutic, imaging and purification reagents for a number of biological targets. Using a variety of different approaches, we have developed antibodies with high specificity and affinity for various targets ranging from small peptides to large proteins, soluble or membrane-associated as well as to activated forms of enzymes. We have applied this approach to G-protein coupled receptors (GPCRs), often considered difficult targets for antibody therapeutics and targeting. Here we demonstrate the use of this technology for the identification of human antibodies targeting C5aR, the chemoattractant GPCR receptor for anaphylatoxin C5a. The N-terminal region (residues 1-31) of C5aR, one of the ligand binding sites, was synthesized, biotinylated and used as the target for selection. Three rounds of selection with our proprietary human Fab phage display library were performed. Screening of 768 isolates by phage ELISA identified 374 positive clones. Based on sequence alignment analysis, the positive clones were divided into 22 groups. Representative Fab clones from each group were reformatted into IgGs and tested for binding to C5aR-expressing cells, the differentiated U-937 cells. Flow cytometric analysis demonstrated that nine out of 16 reformatted IgGs bound to cells. Competition with a C5aR monoclonal antibody S5/1 which recognizes the same N-terminal region showed that S5/1 blocked the binding of positive cell binders to the peptide used for selections, indicating that the identified cell binding IgGs were specific to C5aR. These antibody binders represent viable candidates as therapeutic or imaging agents, illustrating that phage display technology provides a rapid means for developing antibodies to a difficult class of targets such as GPCRs.  相似文献   

7.
Osteopontin (OPN) is primarily a secreted phosphoglycoprotein found in a variety of tissues and body fluids. It has a wide range of reported functions, many of which are affected by the degree of post-translational modification (PTM) of the protein. These PTMs include phosphorylation, glycosylation, and cross-linking by transglutaminase. Here we describe the generation of unique monoclonal antibodies raised against recombinant OPN utilizing the OPN knockout mouse. The antibodies exhibit differential binding to OPN produced by different cell lines from the same species, as well to the multiple OPN forms in human urine. Most of the antibodies generated are able to recognize OPN produced by ras-transformed mouse fibroblasts, however only one antibody recognizes the more phosphorylated protein produced by the differentiating pre-osteoblast murine cell line MC3T3E1. Using a novel biopanning procedure combining T7 phage gene fragment display and protein G precipitation, we have epitope-mapped these antibodies. Several of the antibodies bind to regions of the OPN molecule that are phosphorylated, and one binds the region of OPN that is glycosylated. Using phosphorylated and non-phosphorylated peptides, we show that the binding of two antibodies to the C-terminal end of OPN is inhibited by phosphorylation of this region. In addition, these two antibodies are able to inhibit cell adhesion to recombinant and weakly modified OPN. The antibodies described herein may prove useful in determining the presence of modifications at specific sites and for identifying structural forms of OPN. Also, the sensitivity of these antibodies to PTMs suggests that caution must be taken when choosing anti-OPN monoclonal antibodies to detect this highly modified protein.  相似文献   

8.
《MABS-AUSTIN》2013,5(1):130-142
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.  相似文献   

9.
Recent evidence suggests that most malignancies are driven by “cancer stem cells” sharing the signature characteristics of adult stem cells: the ability to self renew and to differentiate. Furthermore these cells are thought to be quiescent, infrequently dividing cells with a natural resistance to chemotherapeutic agents. These studies theorize that therapies, which effectively treat the majority of tumor cells but ‘miss’ the stem cell population, will fail, while therapies directed at stern cells can potentially eradicate tumors. In breast cancer, researchers have isolated ‘breast cancer stem cells’ capable of recreating the tumor in vivo and in vitro. Generated new tumors contained both additional numbers of cancer stem cells and diverse mixed populations of cells present in the initial tumor, supporting the intriguing self‐renewal and differentiation characteristics. In the present study, an antibody phage library has been used to search for phage displayed‐single chain antibodies (scFv) with selective affinity to specific targets on breast cancer stem cells. We demonstrate evidence of two clones binding specifically to a cancer stem cell population isolated from the SUMl59 breast cancer cell line. These clones had selective affinity for cancer stem cells and they were able to select cancer stem cells among a large population of non‐stem cancer cells in paraffin‐embedded sections. The applicability of these clones to paraffin sections and frozen tissue specimens made them good candidates to be used as diagnostic and prognostic markers in breast cancer patient samples taking into consideration the cancer stern cell concept in tumor biology. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

10.
Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited.
Toshiyuki MoriEmail:
  相似文献   

11.
Tuberculosis is a major cause of mortality and morbidity due to infectious disease. However, current clinical diagnostic methodologies such as PCR, sputum culture, or smear microscopy are not ideal. Antibody-based assays are a suitable alternative but require specific antibodies against a suitable biomarker. Mycolic acid, which has been found in patient sputum samples and comprises a large portion of the mycobacterial cell wall, is an ideal target. However, generating anti-lipid antibodies using traditional hybridoma methodologies is challenging and has limited the exploitation of this lipid as a diagnostic marker. We describe here the isolation and characterization of four anti-mycolic acid antibodies from a nonimmune antibody phage display library that can detect mycolic acids down to a limit of 4.5ng. All antibodies were specific for the methoxy subclass of mycolic acid with weak binding for α mycolic acid and did not show any binding to closely related lipids or other Mycobacterium tuberculosis (Mtb) derived lipids. We also determined the clinical utility of these antibodies based on their limit of detection for mycobacteria colony forming units (CFU). In combination with an optimized alkaline hydrolysis method for rapid lipid extraction, these antibodies can detect 105 CFU of Mycobacterium bovis BCG, a close relative of Mtb and therefore represent a novel approach for the development of diagnostic assays for lipid biomarkers.  相似文献   

12.
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.  相似文献   

13.
目的:基于B细胞表位制备抗肝细胞生成素(HPO)的抗体。方法:根据HPO的空间结构选择了2个候选B细胞表位,展示在T7噬菌体的表面,将提取的重组噬菌体免疫动物,采用ELISA法检测抗血清的效价,通过杂交瘤技术制备针对HPOC端表位的单克隆抗体。结果:2个候选B细胞表位KDGSCD和DGWKDGSC均能诱导抗相应表位多肽的多克隆抗体的产生,免疫6周后血清中抗体效价均达到1∶103,产生的抗体还能够特异识别HPO全蛋白;针对HPOC端表位KDGSCD的单克隆抗体也能识别HPO全蛋白,且具有良好的特异性。结论:基于T7噬菌体展示的B细胞表位可作为免疫原用于制备识别该B细胞表位来源的全蛋白质的抗体。  相似文献   

14.
从噬菌体随机展示十五肽文库筛选出4个与轮状病毒粒子特异性结合多肽。经空斑减少抑制实验和MTT法分析表明其中3个多肽对病毒感染培养细胞具有抑制作用,其中序列为QSNPIHIITNTRNHP的C肽具有显著抑制作用,抑制效果达93%,另外2个多肽A和B抑制效果分别为40%与50%。经过多肽序列分析发现这3个十五肽具有2个保守序列,分别是第2至8个氨基酸残基SNPIHII和第12~15个氨基酸残基NIP。胰蛋白酶水解位点分析表明C肽无裂解位点,而A肽和B肽则分别具有3个和4个潜在水解位点。抑制病毒感染液中胰蛋白酶活性,发现A,B两肽也能显著地抑制病毒离体感染。说明所筛选的多肽2个保守序列的完整对抗病毒感染起着重要作用。C肽有望成为一种治疗轮状病毒感染的口服药物。  相似文献   

15.
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity.

Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies.

Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.  相似文献   


16.
噬菌体抗体库研究进展   总被引:1,自引:1,他引:0  
治疗性抗体的发展经历了异源抗体、人源化抗体和人源性抗体几个阶段。目前,人源性抗体是治疗性抗体发展的主要方向,而噬菌体抗体库技术的出现为人源性抗体的制备提供了良好的技术平台,并且逐渐成为目前获得人源性抗体的主要手段之一。噬菌体抗体库技术是20世纪90年代初期抗体工程领域的一项重大进展,它是噬菌体展示和抗体库2种技术的集成,目前广泛应用于生物医学领域。本文对该技术的原理、类型、特点及研究进展进行了综述。  相似文献   

17.
We describe a novel approach for high-throughput analysis of the immune response in cancer patients using phage-based microarray technology. The recombinant phages used for fabricating phage arrays were initially selected via the use of random peptide phage libraries and breast cancer patient serum antibodies. The peptides displayed by the phages retained their ability to be recognized by serum antibodies after immobilization. The recombinant phage microarrays were screened against either breast cancer or healthy donor serum antibodies. A model-based statistical method is proposed to estimate significant differences in serum antibody reactivity between patients and normals. A significant tumor effect was found with most of the selected phage-displayed peptides, suggesting that recombinant phage microarrays can serve as a tool in monitoring humoral responses towards phage-displayed peptides.  相似文献   

18.
Bovine cysticercosis is detected during the routine post mortem examination of carcasses by visual inspection (knife and eye method). However, the sensitivity of this procedure is several times lower than immunoassays, even when it is performed by qualified professionals. In the present study, a new generation capture antigens were screened from a phage display peptide library using antibodies from Taenia saginata-infected animals. Eight phage clones were selected, and one, Tsag 3 (VHTSIRPRCQPRAITPR), produced similar results to the T. saginata metacestode crude antigen (TsCa) when used as a capture antigen in an ELISA. The phage-displayed peptides competed with TsCa for binding sites, reducing the reactivity by approximately 30 %. Alanine scanning indicated that proline, arginine, and serine are important residues for antibody binding. Tsag 1 (HFYQITWLPNTFPAR), the most frequent affinity-selected clone, and Tsag 6 (YRWPSTPSASRQATL) shared similarity with highly conserved proteins from the Taeniidae family with known immunogenicity. Due to their epitopic or mimotopic properties, these affinity-selected phages could contribute to the rational design of an ante mortem immunodiagnosis method for bovine cysticercosis, as well as an epitope-based vaccine to interrupt the taeniosis/cysticercosis complex.  相似文献   

19.
We describe a novel approach for high-throughput screening of recombinant antibodies, based on their immobilization on solid cellulose-based supports. We constructed a large human synthetic single-chain Fv antibody library where in vivo formed complementarity determining regions were shuffled combinatorially onto germline-derived human variable-region frameworks. The arraying of library-derived scFvs was facilitated by our unique display/expression system, where scFvs are expressed as fusion proteins with a cellulose-binding domain (CBD). Escherichia coli cells expressing library-derived scFv-CBDs are grown on a porous master filter on top of a second cellulose-based filter that captures the antibodies secreted by the bacteria. The cellulose filter is probed with labeled antigen allowing the identification of specific binders and the recovery of the original bacterial clones from the master filter. These filters may be simultaneously probed with a number of antigens allowing the isolation of a number of binding specificities and the validation of specificity of binders. We screened the library against a number of cancer-related peptides, proteins, and peptide-protein complexes and yielded antibody fragments exhibiting dissociation constants in the low nanomolar range. We expect our new antibody phage library to become a valuable source of antibodies to many different targets, and to play a vital role in facilitating high-throughput target discovery and validation in the area of functional cancer genomics.  相似文献   

20.
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号