首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stochastic resonance is demonstrated in a simple energy detector model, as a non-monotonic relationship between signal-to-noise ratio and detection of a sinusoid signal in bandpass-limited Gaussian noise. The behaviour of the model detecting signals of various intensities and signal-to-noise ratios was investigated. Significant improvement in detection was obtained by adding noise for mean signal intensities below the detection criterion of the detector. The range of usable noise levels, however, may be too small to be biologically meaningful. It is demonstrated that improving detection in the analysed model by adding noise to an otherwise undetectable signal is only at best as efficient as what can be obtained by adjusting the criterion to the signal-to-noise ratio. Improving detection by means of stochastic resonance is thus a sub-optimal strategy. It is speculated whether a demonstration of stochastic resonance in a biological system indicates any adaptive significance. More than anything, it indicates the presence of a mismatch between receptor sensitivity and the signal-to-noise ratio of the experiment, not the cause of this mismatch. Received: 22 December 1999 / Accepted in revised form: 14 April 2000  相似文献   

2.
Glucose is the central molecule in many biochemical pathways, and numerous approaches have been developed for fabricating micro biosensors designed to measure glucose concentration in/near cells and/or tissues. An inherent problem for microsensors used in physiological studies is a low signal-to-noise ratio, which is further complicated by concentration drift due to the metabolic activity of cells. A microsensor technique designed to filter extraneous electrical noise and provide direct quantification of active membrane transport is known as self-referencing. Self-referencing involves oscillation of a single microsensor via computer-controlled stepper motors within a stable gradient formed near cells/tissues (i.e., within the concentration boundary layer). The non-invasive technique provides direct measurement of trans-membrane (or trans-tissue) analyte flux. A glucose micro biosensor was fabricated using deposition of nanomaterials (platinum black, multiwalled carbon nanotubes, Nafion) and glucose oxidase on a platinum/iridium microelectrode. The highly sensitive/selective biosensor was used in the self-referencing modality for cell/tissue physiological transport studies. Detailed analysis of signal drift/noise filtering via phase sensitive detection (including a post-measurement analytical technique) are provided. Using this highly sensitive technique, physiological glucose uptake is demonstrated in a wide range of metabolic and pharmacological studies. Use of this technique is demonstrated for cancer cell physiology, bioenergetics, diabetes, and microbial biofilm physiology. This robust and versatile biosensor technique will provide much insight into biological transport in biomedical, environmental, and agricultural research applications.  相似文献   

3.
We describe a method for assessing the quality of mass spectra and improving reliability of relative ratio estimations from (18)O-water labeling experiments acquired from low resolution mass spectrometers. The mass profiles of heavy and light peptide pairs are often affected by artifacts, including coeluting contaminant species, noise signal, instrumental fluctuations in measuring ion position and abundance levels. Such artifacts distort the profiles, leading to erroneous ratio estimations, thus reducing the reliability of ratio estimations in high throughput quantification experiments. We used support vector machines (SVMs) to filter out mass spectra that deviated significantly from expected theoretical isotope distributions. We built an SVM classifier with a decision function that assigns a score to every mass profile based on such spectral features as mass accuracy, signal-to-noise ratio, and differences between experimental and theoretical isotopic distributions. The classifier was trained using a data set obtained from samples of mouse renal cortex. We then tested it on protein samples (bovine serum albumin) mixed in five different ratios of labeled and unlabeled species. We demonstrated that filtering the data using our SVM classifier results in as much as a 9-fold reduction in the coefficient of variance of peptide ratios, thus significantly improving the reliability of ratio estimations.  相似文献   

4.
Signal-to-noise ratio, the ratio between signal and noise, is a quantity that has been well established for MRI data but is still subject of ongoing debate and confusion when it comes to fMRI data. fMRI data are characterised by small activation fluctuations in a background of noise. Depending on how the signal of interest and the noise are identified, signal-to-noise ratio for fMRI data is reported by using many different definitions. Since each definition comes with a different scale, interpreting and comparing signal-to-noise ratio values for fMRI data can be a very challenging job. In this paper, we provide an overview of existing definitions. Further, the relationship with activation detection power is investigated. Reference tables and conversion formulae are provided to facilitate comparability between fMRI studies.  相似文献   

5.
In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach.  相似文献   

6.
Three-dimensional visualization of biological samples is essential for understanding their architecture and function. However, it is often challenging due to the macromolecular crowdedness of the samples and low signal-to-noise ratio of the cryo-electron tomograms. Denoising and segmentation techniques address this challenge by increasing the signal-to-noise ratio and by simplifying the data in images. Here, mean curvature motion is presented as a method that can be applied to segmentation results, created either manually or automatically, to significantly improve both the visual quality and downstream computational handling. Mean curvature motion is a process based on nonlinear anisotropic diffusion that smooths along edges and causes high-curvature features, such as noise, to disappear. In combination with level-set methods for image erosion and dilation, the application of mean curvature motion to electron tomograms and segmentations removes sharp edges or spikes in the visualized surfaces, produces an improved surface quality, and improves overall visualization and interpretation of the three-dimensional images.  相似文献   

7.
MOTIVATION: DNA microarray technology typically generates many measurements of which only a relatively small subset is informative for the interpretation of the experiment. To avoid false positive results, it is therefore critical to select the informative genes from the large noisy data before the actual analysis. Most currently available filtering techniques are supervised and therefore suffer from a potential risk of overfitting. The unsupervised filtering techniques, on the other hand, are either not very efficient or too stringent as they may mix up signal with noise. We propose to use the multiple probes measuring the same target mRNA as repeated measures to quantify the signal-to-noise ratio of that specific probe set. A Bayesian factor analysis with specifically chosen prior settings, which models this probe level information, is providing an objective feature filtering technique, named informative/non-informative calls (I/NI calls). RESULTS: Based on 30 real-life data sets (including various human, rat, mice and Arabidopsis studies) and a spiked-in data set, it is shown that I/NI calls is highly effective, with exclusion rates ranging from 70% to 99%. Consequently, it offers a critical solution to the curse of high-dimensionality in the analysis of microarray data. AVAILABILITY: This filtering approach is publicly available as a function implemented in the R package FARMS (www.bioinf.jku.at/software/farms/farms.html).  相似文献   

8.
 In many applications of signal processing, especially in communications and biomedicine, preprocessing is necessary to remove noise from data recorded by multiple sensors. Typically, each sensor or electrode measures the noisy mixture of original source signals. In this paper a noise reduction technique using independent component analysis (ICA) and subspace filtering is presented. In this approach we apply subspace filtering not to the observed raw data but to a demixed version of these data obtained by ICA. Finite impulse response filters are employed whose vectors are parameters estimated based on signal subspace extraction. ICA allows us to filter independent components. After the noise is removed we reconstruct the enhanced independent components to obtain clean original signals; i.e., we project the data to sensor level. Simulations as well as real application results for EEG-signal noise elimination are included to show the validity and effectiveness of the proposed approach. Received: 6 November 2000 / Accepted in revised form: 12 November 2001  相似文献   

9.
Many acoustically communicating grasshoppers live in crowded populations where sound of many individuals may cause permanent noise. Tympanic receptors and first-order auditory interneurons of Locusta migratoria code such noise tonically, whereas many higher order interneurons react only weakly. In response to simultaneously presented sound they exhibit a better signal-to-noise ratio than their presynaptic elements. Two possible filter mechanisms are suggested for noise reduction in higher-order interneurons: (i) high-pass filtering of receptor spike frequencies and (ii) filtering due to synchronization of receptor spikes. Different receptor spike frequencies were elicited by series of short noise pulses with variable repetition rates. Receptor activities differing in their degree of synchronization were elicited by sound stimuli with variable rising times. In contrast to the first order interneurons some higher order interneurons responded best to receptor spike frequencies above 150–200 Hz, thus showing the postulated filtering. Only one higher order interneuron (AN4) distinguished between synchronous and asynchronous receptor activities. It is suggested that high-pass filtering of receptor spike frequencies is responsible for the noise filtering observed in these interneurons. The synchronization selectivity of AN4 is proposed to be responsible for temporal pattern detection of conspecific sounds.  相似文献   

10.
In sensory biology, a major outstanding question is how sensory receptor cells minimize noise while maximizing signal to set the detection threshold. This optimization could be problematic because the origin of both the signals and the limiting noise in most sensory systems is believed to lie in stimulus transduction. Signal processing in receptor cells can improve the signal-to-noise ratio. However, neural circuits can further optimize the detection threshold by pooling signals from sensory receptor cells and processing them using a combination of linear and nonlinear filtering mechanisms. In the visual system, noise limiting light detection has been assumed to arise from stimulus transduction in rod photoreceptors. In this context, the evolutionary optimization of the signal-to-noise ratio in the retina has proven critical in allowing visual sensitivity to approach the limits set by the quantal nature of light. Here, we discuss how noise in the mammalian retina is mitigated to allow for highly sensitive night vision.  相似文献   

11.
Underwater passive acoustic monitoring systems record many hours of audio data for marine research, making fast and reliable non-causal signal detection paramount. Such detectors assist in reducing the amount of labor required for signal annotations, which often contain large portions devoid of signals.Cetacean vocalization detection based on spectral entropy is investigated as a means of vocalization discovery. Previous techniques using spectral entropy mostly consider time–frequency enhancement of the entropy measure, and utilize the short time Fourier transform (STFT) as its time–frequency (TF) decomposition. Spectral entropy methods also requires the user to set a detection threshold manually, which call for knowledge of the produced entropy measures.This paper considers median filtering as a simple, effective way to provide temporal stabilization to the entropy measure, and considers the continuous wavelet transform (CWT) as an alternative TF decomposition. K-means clustering is used to determine the threshold required to accurately separate the signal/no-signal entropy measures, resulting in a one-dimensional, two-class classification problem. The class means are used to perform pseudo-probabilistic soft class assignment, which is a useful metric in algorithmic development. The effect of median filtering, signal-to-noise ratio and the chosen TF decomposition are investigated.The accuracy and specificity measures of the proposed detection technique are simulated using a pulsed frequency modulated sweep, corrupted by a sample of ocean noise. The results show that median filtering is particularly effective for low signal-to-noise ratios. Both the STFT and CWT prove to be effective TF analyses for signal detection purposes, each presenting with different advantages and drawbacks. The simulated results provide insight into configuring the proposed detector, which is compared to a conventional STFT-based spectral entropy detector using manually annotated humpback whale (Megaptera novaeangliae) songs recorded in False Bay, South Africa, July2021.The proposed method shows a significant improvement in detection accuracy and specificity, while also providing a more interpretable detection threshold setting via soft class assignment, providing a detector for use in development of adaptive algorithms.  相似文献   

12.
Information-carrying signals in the real world are often obscured by noise. A challenge for any system is to filter the signal from the corrupting noise. This task is particularly acute for the signal transduction network that mediates bacterial chemotaxis, because the signals are subtle, the noise arising from stochastic fluctuations is substantial, and the system is effectively acting as a differentiator which amplifies noise. Here, we investigated the filtering properties of this biological system. Through simulation, we first show that the cutoff frequency has a dramatic effect on the chemotactic efficiency of the cell. Then, using a mathematical model to describe the signal, noise, and system, we formulated and solved an optimal filtering problem to determine the cutoff frequency that bests separates the low-frequency signal from the high-frequency noise. There was good agreement between the theory, simulations, and published experimental data. Finally, we propose that an elegant implementation of the optimal filter in combination with a differentiator can be achieved via an integral control system. This paper furnishes a simple quantitative framework for interpreting many of the key notions about bacterial chemotaxis, and, more generally, it highlights the constraints on biological systems imposed by noise.  相似文献   

13.
14.
Malik WQ  Schummers J  Sur M  Brown EN 《PloS one》2011,6(6):e20490
Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models.  相似文献   

15.
A field programmable gate array (FPGA) based hardware platform that is used to implement a digital, multi-gate pulsed Doppler ultrasound system for transcranial Doppler (TCD) use is described. The Doppler audio signal is extracted from the digitised radio-frequency signal by matched filtering and suitable sampling. The system was configured to acquire Doppler signals from 16 depth locations and to display Doppler signal power versus depth as well as a sonogram from a user specified depth. The signal-to-noise performance of the system was comparable with that of a commercially available TCD unit for equivalent pulse repetition frequency and sample volume settings.The flexibility of the platform was used to demonstrate the feasibility of using coded transducer excitation and pulse compression techniques to improve axial resolution compared to a non-coded implementation. The axial resolution improvement was demonstrated using a flow phantom and measured using a vibrating wire phantom. The measured resolutions were 9.1 and 2.4 mm for the conventional and coded implementations, respectively. The reduction in signal-to-noise ratio of approximately 5 dB associated with the configuration using coded excitation was attributable to the frequency response characteristics of the transducer rather than the processing technique used. This work demonstrates both the flexibility associated with an FPGA implementation of a Doppler ultrasound system and the potential for coded excitation to improve axial resolution in TCD systems.  相似文献   

16.
Cryo-electron tomography is an imaging technique with an unique potential for visualizing large complex biological specimens. It ensures preservation of the biological material but the resulting cryotomograms are extremely noisy. Sophisticated denoising techniques are thus essential for allowing the visualization and interpretation of the information contained in the cryotomograms. Here a software tool based on anisotropic nonlinear diffusion is described for filtering cryotomograms. The approach reduces local noise and meanwhile enhances both curvilinear and planar structures. In the program a novel solution of the partial differential equation has been implemented, which allows a reliable estimation of derivatives and, furthermore, reduces computation time and memory requirements. Several criteria have been included to automatically select the optimal stopping time. The behaviour of the denoising approach is tested for visualizing filamentous structures in cryotomograms.  相似文献   

17.
全场光学相干层析成像技术(全场OCT)是研究早期胚胎形态发育的最理想成像设备,然而所采集图像难免受噪声干扰.这些噪声可模糊早期胚胎内不同组织结构的边界,从而给基于图像边界的结构划分带来干扰.为解决这一问题,本文运用中值滤波、维纳滤波、各向异性扩散算法处理全场OCT获得的早期胚胎图像,并运用信噪比、均方误差、峰值信噪比和边缘保留等指标评价图像处理效果.结果表明:经各向异性扩散算法处理的早期胚胎图像,可完整地保留原始图像信息,且边界最清晰,视觉效果最好.  相似文献   

18.
A generalized subspace approach is proposed for single channel brain evoked potential (EP) extraction from background electroencephalogram (EEG) signal. The method realizes the optimum estimate of EP signal from the observable noisy signal. The underlying principle is to project the signal and noise into signal and noise coefficient subspace respectively by applying projection matrix at first. Secondly, coefficient weighting matrix is achieved based on the autocorrelation matrices of the noise and the noisy signal. With the coefficient weighting matrix, we can remove the noise projection coefficients and estimate the signal ones. EP signal is then obtained by averaging the signals estimated with the reconstruction matrix. Given different signal-to-noise ratio (SNR) conditions, the algorithm can estimate the EP signal with only two sweeps observable noisy signals. Our approach is shown to have excellent capability of estimating EP signal even in poor SNR conditions. The interference of spontaneous EEG has been eliminated with significantly improved SNR. The simulation results have demonstrated the effectiveness and superior performance of the proposed method.  相似文献   

19.
This paper reviews data acquisition and signal processing issues relative to producing an amplitude estimate of surface EMG. The paper covers two principle areas. First, methods for reducing noise, artefact and interference in recorded EMG are described. Wherever possible noise should be reduced at the source via appropriate skin preparation, and the use of well designed active electrodes and signal recording instrumentation. Despite these efforts, some noise will always accompany the desired signal, thus signal processing techniques for noise reduction (e.g. band-pass filtering, adaptive noise cancellation filters and filters based on the wavelet transform) are discussed. Second, methods for estimating the amplitude of the EMG are reviewed. Most advanced, high-fidelity methods consist of six sequential stages: noise rejection/filtering, whitening, multiple-channel combination, amplitude demodulation, smoothing and relinearization. Theoretical and experimental research related to each of the above topics is reviewed and the current recommended practices are described.  相似文献   

20.
Hidden Markov modeling (HMM) can be applied to extract single channel kinetics at signal-to-noise ratios that are too low for conventional analysis. There are two general HMM approaches: traditional Baum's reestimation and direct optimization. The optimization approach has the advantage that it optimizes the rate constants directly. This allows setting constraints on the rate constants, fitting multiple data sets across different experimental conditions, and handling nonstationary channels where the starting probability of the channel depends on the unknown kinetics. We present here an extension of this approach that addresses the additional issues of low-pass filtering and correlated noise. The filtering is modeled using a finite impulse response (FIR) filter applied to the underlying signal, and the noise correlation is accounted for using an autoregressive (AR) process. In addition to correlated background noise, the algorithm allows for excess open channel noise that can be white or correlated. To maximize the efficiency of the algorithm, we derive the analytical derivatives of the likelihood function with respect to all unknown model parameters. The search of the likelihood space is performed using a variable metric method. Extension of the algorithm to data containing multiple channels is described. Examples are presented that demonstrate the applicability and effectiveness of the algorithm. Practical issues such as the selection of appropriate noise AR orders are also discussed through examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号