首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
微生物发酵产光学纯度D-乳酸研究进展   总被引:2,自引:0,他引:2  
D-乳酸作为一种重要的手性中间体和聚乳酸合成的原料,其生产已越来越受到人们的重视。然而,低光学纯度D-乳酸在很多领域的应用都受到限制。微生物发酵法能够生产高光学纯度的D-乳酸。除了乳酸生产的传统菌株-乳酸细菌,研究者们还通过基因工程的手段不断探索其它种属菌株利用更廉价的可再生资源高产光学纯度D-乳酸的可行性。介绍了D-乳酸的物化性质及其在工业生产、化学加工和聚乳酸合成中的应用,并详细综述了国内外发酵法生产光学纯度D-乳酸的最新研究进展,着重介绍了采用基因工程育种策略提高菌株的D-乳酸产量、转化率、生产强度以及光学纯度,降低副产物的合成,扩大底物利用范围的研究成果。所涉及的菌株包括:乳酸细菌、大肠杆菌、谷氨酸棒杆菌以及酵母等。这些研究表明,应用基因工程手段改造生产菌株的代谢途径是选育D-乳酸发酵生产菌株的发展趋势。最后还对D-乳酸发酵生产的前景进行了展望。  相似文献   

2.
本文对粘质沙雷氏菌发酵生产D-乳酸进行了研究。以粘质沙雷氏菌G1(Serratia marcescens G1)为出发菌种,摇瓶试验确定了发酵培养方式:前12 h为菌体生长阶段,有氧培养,温度28℃,pH值7.0;后36 h为D-乳酸合成积累阶段,无氧培养,温度44℃,pH值6.0。且发现使用葡萄糖为碳源时更有利于D-乳酸的合成积累。采用缺失2,3-丁二醇合成能力的基因工程菌株R1为出发株,经筛选后得到耐受较高浓度乳酸盐的菌株R150,以R150为发酵菌种,在3.7 L发酵罐上采用两阶段发酵法,并通过增加起始菌体浓度的方法,发酵生成的D-乳酸浓度达到83.5 g/L,光学纯度达到98.9%。本研究成果为使用粘质沙雷氏菌发酵生产D-乳酸的深入研究打下了基础。  相似文献   

3.
L-乳酸的发酵生产和聚L-乳酸的化学加工   总被引:2,自引:0,他引:2  
L-乳酸广泛应用于食品、医药、日化和工业等各个领域。近年来随着石化资源的不断紧缺,众多化学合成的高分子材料的生产受到了限制。以生物质资源为基础的L-乳酸因此被大量用于加工生产成聚L-乳酸等环境友好型生物可降解材料。正是由于L-乳酸需求量的增大,如何高效低成本地生产L-乳酸显得尤为重要。系统综述了L-乳酸生产菌株的选育,用于L-乳酸发酵生产的廉价资源的开发利用,L-乳酸的发酵生产和L-乳酸的分离纯化等方面的研究进展。目前研究的热点和难点正是基于上述四个部分:菌种方面,以可以高效代谢利用廉价底物,且营养需求低的选育目标获得了多个优良的生产菌种,然而具备综合代谢优势的菌种还有待进一步选育;发酵底物方面,已开发利用多种廉价,来源丰富且易于菌种代谢并高效转化成乳酸的底物,但是对这些底物工业规模应用还有待进一步研究;发酵工艺方面,建立了环境友好型,劳动强度低的发酵工艺,然而实际应用中仍然存在成本高的问题;后提取方面,通过选育低营养需求的生产菌种和采用新型发酵工艺有效地简化了后提取过程,但是实际应用方面仍受发酵工艺成本高的制约。最后对聚L-乳酸的化学加工以及聚L-乳酸的生物降解进行了探讨并提出了一些建议。  相似文献   

4.
批式发酵法生产乳酸的几个重要因素   总被引:1,自引:0,他引:1  
乳酸是一种重要的有机酸,在各个行业中均有广泛的应用,它作为生物可降解聚乳酸的原料尤其令人关注.本文对提高乳酸发酵生产中的几个重要因素如菌种、原料、工艺控制及其优化等作了简要探讨  相似文献   

5.
【目的】D-乳酸脱氢酶是催化丙酮酸合成D-乳酸的关键酶。由于其不耐热,从而限制了D-乳酸高温发酵菌株的构建。本文从詹氏乳杆菌中克隆新型D-乳酸脱氢酶研究其酶学性质,为构建D-乳酸高温发酵菌株,进一步降低D-乳酸生产成本奠定基础。【方法】通过克隆詹氏乳杆菌的D-乳酸脱氢酶,将其进行体外表达,并与来自植物乳杆菌中的D-乳酸脱氢酶的最适温度、最适pH、动力学参数及热稳定性和热失活性相比较,研究詹氏乳杆菌D-乳酸脱氢酶的耐热性。【结果】詹氏乳杆菌的D-乳酸脱氢酶最适温度(45 °C)比植物乳杆菌中的D-乳酸脱氢酶的最适温度(30 °C)高很多,热失活的时间和温度均要比植物乳杆菌中D-乳酸脱氢酶高很多。同时其催化效率(kcat/Km)是植物乳杆菌D-乳酸脱氢酶的3倍左右。【结论】詹氏乳杆菌的D-乳酸脱氢酶具有更好的耐热性和更高的催化活力。  相似文献   

6.
基因工程菌发酵生产L-乳酸研究进展   总被引:3,自引:0,他引:3  
乳酸是重要的工业平台化学品。随着聚乳酸产业的兴起,对高质量L-乳酸的需求量也不断增加。为了进一步降低L-乳酸发酵成本,提高菌株的工业适应性,各种现代生物技术已经应用到L-乳酸发酵菌种的改造上来。文中简要综述了近年来使用乳酸菌、酵母、大肠杆菌及米根霉等基因工程菌株发酵生产L-乳酸的技术进展。  相似文献   

7.
高效利用木糖发酵生产D-乳酸或其他生物质产品,是充分利用木质纤维素的一个关键问题。以高效利用木糖产L-乳酸的Escherichia coli WL204为出发菌株,采用RED基因置换技术将ldhL基因置换为ldhA基因,获得一株能利用木糖产D-乳酸的大肠杆菌工程菌株Escherichia coli LHY02,该菌株利用10%木糖发酵,D-乳酸产量达到84.4 g/L,产物光学纯度达到99.5%。此外,该菌株仍然具有较好的利用葡萄糖产D-乳酸的能力。  相似文献   

8.
对D-乳酸在微孔超高交联树脂HD-01上的吸附热力学和动力学进行研究。考察p H对D-乳酸吸附的影响,D-乳酸的吸附量随p H的升高而降低,最佳p H为2.1。采用静态吸附法测定温度293.15、313.15和333.15 K下D-乳酸的吸附等温线,并采用Langmuir和Freundlich等温线方程对实验数据进行拟合,其中Freundlich方程的拟合效果较好,相关系数R20.99。树脂HD-01对D-乳酸的吸附量为0.146 5 g/g(ρe=102 g/L,333.15 K),比大孔吸附树脂Amberlite XAD1600高出11%。计算得到的吉布斯自由能变ΔG和等量吸附焓变ΔH均小于零,说明D-乳酸在HD-01上的吸附是自发进行的放热过程。测定了不同温度下D-乳酸在树脂上的吸附动力学,实验结果表明,吸附动力学曲线符合准一阶速率方程。D-乳酸在树脂上的传质速率随温度的升高而增大,293.15 K达到吸附平衡只需10 min。  相似文献   

9.
发酵初期在米根霉菌发酵培养基中添加L-乳酸可以调控发酵产物乳酸的光学纯度。随着L-乳酸添加量的增加,所产L-乳酸的光学纯度随之增加,当L-乳酸的添加量≥1.5g/L时,D-乳酸不再产生。同时,L-乳酸的产量、生物量、糖转化率也随之降低。该调控方法对乳酸菌调控产L-乳酸光学纯度影响不大,对大肠杆菌发酵调控产D-乳酸光学纯度没有效果。  相似文献   

10.
工业乳酸发酵的近期进展   总被引:12,自引:1,他引:11  
乳酸是一种重要的多用途有机酸。通过菌种改良和发酵工艺技术的改进,可以大大提升微生物发酵技术水平,降低成本。简要综述有关的研究进展。  相似文献   

11.
研究了菊糖芽孢乳杆茵DS2的突变株DS2-18在中试规模的D-乳酸发酵.在容积为300L自控发酵罐中,DS2-18茵在合适的发酵条件下,即培养基组成(g/L):葡萄糖120,玉米浆8,蛋白胨6,豆粕水解液100,接种量8%(v/v),发酵温度40℃,以轻质碳酸钙作为中和剂调pH 5~6,发酵期间交替不通气和通气,发酵6...  相似文献   

12.
This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.  相似文献   

13.
选择乙酸根、糠醛、5-羟甲基糠醛、苯酚、香草酸和丁香醛等6种典型木质纤维素酸解副产物,考察它们对D-乳酸生产菌Sporolactobacillus sp.Y2-8生长及发酵的影响。实验结果表明:酚类物质抑制作用最强烈,0.25 g/L丁香醛已经完全抑制了菌体的生长和D-乳酸的发酵;苯酚和香草酸在低浓度(≤1.0 g/L)时抑制作用较小,但质量浓度达到3 g/L时对D-乳酸产量的抑制率分别为99%和70%;3 g/L糠醛和5-羟甲基糠醛对产物的抑制率分别为60%与20%,抑制作用小于酚类;乙酸根的影响最小,10 g/L的乙酸钠对菌体的生长和发酵几乎无抑制作用;当抑制物混合时,存在着相互促进作用,抑制作用更强烈。  相似文献   

14.
液质发酵食品发酵过程中微生物组成复杂,复杂的微生物发酵体系会影响微生物的生长和代谢,继而改变微生物的群落结构与功能,最终影响液质发酵食品的品质。乳酸菌在食品发酵中对形成风味物质、提高营养价值、抑制腐败菌生长具有重要的作用。本文主要对近年来食醋、酱油和饮料酒等液质发酵食品中微生物群落及与乳酸菌间相互作用关系进行综述,了解液质发酵食品在发酵过程中微生物群落结构和群落中乳酸菌与其他微生物的相互作用类型,探讨乳酸菌在发酵过程中的功能以及乳酸菌与其他微生物之间的相互作用机制。  相似文献   

15.
The production of D-lactic acid by Lactobacillus delbrueckii (ATCC 9649) during fermentation was monitored on-line with a reagentless D-lactate dehydrogenase modified carbon paste electrode in a flow injection system integrated with a filtration sampling device. The time delay between sampling and detection was approximately 6 min. The use of an electropolymerized ortho-phenylenediamine membrane on the elctrode resulted in a very selective sensor response with acceptable stability and sensitivity. The D-lactate concentrations determined on-line agreed well with those determined by a standard method, suggesting that this sensor system is suitable for on-line monitoring of fermentation processes. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
琥珀酸发酵研究进展*   总被引:6,自引:0,他引:6  
琥珀酸在化工和食品行业应用广泛。与传统化学方法相比,微生物发酵法生产琥珀酸具有诸多优点:生产成本具有竞争力;利用可再生的农业资源包括二氧化碳作为原料,避免了对石化原料的依赖;减少了化学合成工艺对环境的污染。主要介绍产琥珀酸微生物的来源和育种,代谢途径和发酵调控机制以及产品回收工艺的进展。  相似文献   

17.
利用微生物细胞工厂实现高效的原料利用和目标物质合成是合成生物学的重要研究方向之一。传统工业微生物主要以糖基类原料作为发酵底物,而发掘更为廉价的碳资源并实现其高效利用,值得探究。甲酸是重要的有机一碳资源,亦是基本有机化工原料之一,广泛应用于农药、皮革、染料、医药和橡胶等工业。近年来受产业需求波动的影响,甲酸生产面临产能过剩的困境,亟待发展新的转化路径来拓展和延伸相关产业链,而生物路线是重要方向之一。然而,天然的甲酸利用微生物普遍存在生长缓慢、甲酸代谢效率低以及分子工具匮乏造成遗传改造困难等问题,亟待改造和优化;而人工构建甲酸利用微生物的研究尚处于起始阶段,存在极大的发展空间,值得关注。文中对近年来甲酸生物利用的研究进展进行了梳理和总结,并对今后的研究重点和方向提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号