首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
EGTA对Cd胁迫下蓖麻Cd积累和营养元素吸收的影响   总被引:3,自引:0,他引:3  
以‘淄蓖麻5号’蓖麻品种为材料,通过盆栽试验研究了重度Cd土壤污染(100 mg·kg-1)条件下,不同浓度(0、0.5、1.0、2.0 mmol·kg-1)外源螯合剂——乙二醇双(2-氨基乙基醚)四乙酸(EGTA)对蓖麻植株生长、Cd积累和营养元素吸收的影响,探讨外源螯合剂调控Cd污染土壤上植物生长和修复效应。结果显示:(1)在Cd胁迫下,土壤中外源添加0.5~2.0 mmol·kg-1EGTA使蓖麻根系鲜、干重比不添加EGTA对照不同程度降低,但植株总干重没有受到显著影响。(2)外源EGTA能有效促进Cd从蓖麻根部向地上部的转移,2.0 mmol·kg-1的EGTA处理使蓖麻叶片Cd 含量显著增加了41.34倍;与不添加EGTA对照相比,外源EGTA处理蓖麻叶片中Cd积累量随添加EGTA的浓度增加而显著大幅度增加14.0~45.6倍,占相应植株总积累量的36.89%~58.63%,而茎中Cd积累量增加幅度较小,根中Cd积累量则显著降低。(3)Cd胁迫条件下,外源EGTA对蓖麻各器官矿质元素含量的影响不一,EGTA促进K向蓖麻地上部的转运,同时抑制Mg向植株地上部转运;随土壤添加的EGTA浓度提高,蓖麻植株对Ca吸收表现为低促高抑,叶片Zn含量和植株Cu含量逐渐增加,叶片和根系Fe含量及植株各器官Mn含量显著增加。与无Cd胁迫对照相比,EGTA在提高植株Cd积累的同时,降低了根系对K的吸收。研究表明,Cd胁迫显著抑制了蓖麻植株的生长,适宜浓度的外源EGTA对Cd的这种抑制有显著的缓解作用;外源EGTA改变了Cd在蓖麻根、茎、叶中的积累分布情况,提高了Cd从根系向地上部,尤其是向叶片的转移能力,从而强化了蓖麻对Cd污染土壤的修复效率;在采用EGTA强化植物修复Cd污染土壤时,应适量增施K肥以保证植株的正常生理代谢。  相似文献   

2.
对水稻土施用城市污泥和化肥盆栽通菜,应用GC/MS联机检测技术对通菜中6种邻苯二甲酸酯化合物(PAEs)进行分析,探讨施肥对通菜中PAEs含量的影响,结果表明,各处理通菜中6种PAEs化合物的总含量(∑PAEs)在2.129~7.111mg·kg-1之间,依次为广州污泥+化肥(7.111mg·kg-1)>广州污泥(4.767mg·kg-1)>佛山污泥(3;569mg·kg-1)>佛山污泥+化肥(3.305mg·kg-1)>化肥(2.638mg·kg-1)>空白对照(2.129mg·kg-1)。显示了施肥造成通菜中∑PAEs不同程度的提高,各处理通菜中的PAEs均以个别化合物为主,其中空白对照、化肥、佛山污泥和广州污泥处理的通菜中邻苯二甲酸丁基苄基酯(BBP)占∑PAEs的40%~81%。佛山污泥+化肥处理的通菜中邻苯二甲酸正二丁酯(DnBP)占∑PAEs的56%,而广州污泥+化肥处理的通菜中邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸正二辛酯(DnOP)和邻苯二甲酸(2-乙基己基)酯(DEHP)各占∑PAEs的30%左右,通菜中∑PAEs和多数化合物的含量不同程度地大于其在根系中的含量。  相似文献   

3.
城市污泥与稻草堆肥中邻苯二甲酸酯(PAEs)的研究   总被引:11,自引:5,他引:6  
将广州城市污泥与稻草进行翻堆、接菌-翻堆、连续通气和间歇通气4种方式的堆肥,应用GC/MS技术对堆肥中6种属于USEPA优控污染物的邻苯二甲酸醇化合物(PAEs)进行分析,探讨堆肥产物中PAEs的含量分布以及不同方式堆肥对PAEs的降解效果,结果表明,4种方式堆肥中PAEs总含量(∑PAEs)在9.815~17.832mg·kg-1之间,依次为翻堆(17.832mg·kg-1)>接菌-翻堆(13.927mg·kg-1)>间隙通气(10.765mg·kg-1)>连续通气(9.815mg·kg-1),堆肥中PAEs以邻苯二甲酸正二辛酯(DhOP)为主,占∑PAEs的82.2%~89.696,不同方式堆肥中∑PAEs的降解率为连续通气(45.71%)>间隙通气(40.4696)>接菌-翻堆(22.97%)>翻堆(1.3796)(平均降解率为27.63%),其中邻苯二甲酸二乙醇(DEP)、邻苯二甲酸正二丁酯(DnBP)和邻苯二甲酸丁基苄基酯(BBP)的降解率分别为95.7696~98.6896、79.5696~99.46%和87.42%~98.42%;但邻苯二甲酸二甲酯(DMP)和邻苯二甲酸正二辛酯的含量反而增加,邻苯二甲酸(2-乙基己基)酯(DEHP)在所有堆肥中均未检出。  相似文献   

4.
甘肃陇东旱塬不同树龄苹果园矿质氮的分布和积累特征   总被引:1,自引:0,他引:1  
对甘肃陇东地区不同树龄苹果园土壤矿质氮的分布和积累特征进行了研究.结果表明:土壤铵态氮含量随着苹果树龄的增大呈上升趋势,2~3年生、5年生、10年生、15年生、20年生、22年生果园0~120 cm土层铵态氮含量分别为3.3、5.8、6.5、9.1、12.1和15.3 mg·kg-1;不同树龄果园0~60 cm土层铵态氮含量大于60~120 cm土层.不同树龄果园硝态氮含量在0~40 cm土层相对较低,随土层深度增加,其含量迅速增加;随着种植年限增加,不同苹果园硝态氮累积量也呈显著增加趋势,22年生果园0~120 cm土层硝态氮累积量达到2602.5 kg·hm-2.旱塬苹果园表现为土壤铵态氮呈浅层积累、而硝态氮呈深层积累的特征.  相似文献   

5.
 在目前全球氮沉降不断增加的背景下, 研究农田土壤呼吸对氮沉降的响应有助于理解未来生态系统碳循环对全球变暖的潜在影响。为探讨不同施氮浓度对华东地区冬小麦(Triticum aestivum)生长期土壤呼吸的影响, 该实验设计了对照组(不施加氮肥)和3种浓度施氮处理组(低浓度施氮15 g·m–2·a–1, 中等浓度施氮30 g·m–2·a–1, 高浓度施氮45 g·m–2·a–1)。使用便携式土壤CO2通量观测仪LI-8100测定不同施氮浓度处理下冬小麦生长期(2013年12月至2014年5月)的土壤呼吸速率, 并探讨土壤呼吸与土壤温度、湿度等环境因素的关系。结果表明: 低、中、高3种浓度施氮处理的土壤呼吸速率平均值分别为5.29、6.17和6.75 μmol·m–2 ·s–1, 与对照组(土壤呼吸速率平均值为4.90 μmol·m–2·s–1)相比, 分别增加了7.8%、23.6%和37.8%; 地上生物量分别增加39.9%、104.4%和200.2%, 并与冬小麦生长季的总土壤呼吸正相关。5 cm深度土壤的温度与土壤呼吸速率呈指数关系(p < 0.05), 土壤呼吸季节变化的65%–75%由土壤温度引起, 其温度敏感性为2.09–2.32。结果表明, 添加氮肥促进了植物的生长, 增加了生物量, 从而增加了冬小麦农田的土壤呼吸速率。  相似文献   

6.
为探究薹草属(Carex L.)植物在不同植被类型中的分布状况,该研究对甘肃中东部地区9种薹草属(Carex L.)植物分布区的群落特征进行调查,并对土壤养分状况进行比较分析,以揭示野生薹草群落物种多样性和分布特征与土壤环境因子间的关系。结果表明:(1) 9种薹草群落物种多样性差异性较大,Shannon-Wiener多样性指数(H)、Simpson优势度指数(Dsi)均以青绿薹草群落最高,亚柄薹草最低;Patrick丰富度指数(R)以异穗薹草群落最高,细叶薹草群落最低;Pielou均匀度指数(Jsw)以凹脉薹草群落最高,亚柄薹草最低。(2) 9种野生薹草属植物适宜生长的土壤pH呈中性或弱碱性,且有机质、氮素、钾素含量较丰富,磷含量偏低;土壤有机质、pH、全氮、全磷、全钾、碱解氮、速效磷、速效钾含量的平均值分别为41.07 g·kg-1、8.35、1.16 g·kg-1、0.65 g·kg-1、5.60 g·kg-1、47.94 mg·kg-1、5.82 mg·kg-1和100.60 mg·kg-1。(3) 9种薹草属植物群落物种多样性与全氮、全磷、全钾、碱解氮、有机质、降雨量和海拔呈正相关关系,而与土壤pH、速效磷、速效钾呈负相关关系,且降雨量、土壤pH、速效磷和有机质对9种野生薹草属植物群落物种多样性影响较大。  相似文献   

7.
为了解氮肥和钙肥对烤烟(Nicotiana tabacum)生长的影响,对成熟期烤烟的根系形态、生理代谢指标和产量进行了研究。结果表明,与施0.12 g kg-1氮相比,施0.20 g kg-1氮的烤烟根系最长侧根长、根系体积、根干重、叶干重和可溶性蛋白质含量均极显著升高,MDA含量极显著下降,SOD活性显著下降,但对侧根数、CAT活性和O2·的影响均不显著。施钙0.40 g kg-1,根系体积、侧根数、CAT和SOD活性以及可溶性蛋白质含量均比对照提高,MDA含量和O2·则降低;施钙1.00 g kg-1,最长侧根长、根干重和叶干重均提高。氮×钙互作对烤烟的最长侧根长、根系体积、根干重、叶干重和生理代谢指标的影响均极显著,但对侧根数的影响不显著。因此,施0.20 g kg-1氮和0.40 g kg-1钙能最大限度地改善烤烟根系形态、生理状况及提高产量。  相似文献   

8.
不同生态条件下长期施钾对土壤钾素固定影响的机理   总被引:3,自引:0,他引:3  
采用X射线衍射分析技术和室内模拟法,研究了长期施钾对不同生态条件和不同轮作制度下黑土、塿土和灰漠土钾素固定的影响机理.结果表明,长期施钾对水云母含量较低土壤的钾素固定能力影响较大.与不施钾土壤相比,水云母含量较低的黑土和含量较丰富的塿土在外源钾加入浓度在400~4000 mg·kg-1范围内,对外源钾的固定量分别降低了75~747mg·kg-1和16~238 mg·kg-1,而水云母含量丰富的灰漠土的固钾能力无明显变化.长期施钾主要通过影响土壤含钾矿物组成对土壤固钾能力产生影响,即延缓或阻止水云母向云母-蒙脱石混层层间矿物的转化,使土壤对外源钾的固定能力降低;另外,长期施钾使土壤缓效钾含量和K+饱和度增加,土壤固钾能力降低.  相似文献   

9.
高晋丽  宋艳宇  宋长春  张豪  谭稳稳  杜宇 《生态学报》2021,41(20):8171-8177
为探讨氮素营养环境变化对冻土区泥炭地植物细根形态的影响,在大兴安岭泥炭地开展了不同浓度氮素添加模拟试验,添加量分别为0 g N m-2 a-1(CK)、6 g N m-2 a-1(N1)、12 g N m-2 a-1(N2)和24 g N m-2 a-1(N3)。在2020年8月和9月,利用微根管技术观测泥炭地不同深度(0-20 cm、20-40 cm)土壤中的植物细根形态,应用WinRHIZO图像分析软件分析根系特征。结果表明,在表层土壤(0-20 cm)中植物细根的总根长、总表面积、总体积和根长密度随施氮量增加而增加,其中8月份N3处理下细根总根长、总表面积、总体积和根长密度显著高于其他处理(P< 0.05),N2处理下细根总表面积、总体积显著高于对照组和N1处理;9月份N3处理下细根总根长和根长密度显著高于对照组,总表面积和总体积显著高于对照组和N1处理。说明高浓度氮素添加在一定程度上缓解了植物氮素限制,能够显著促进表层土壤(0-20 cm)中植物细根的生长,但对亚表层土壤(20-40 cm)中细根的影响幅度小于表层土壤。  相似文献   

10.
山东寿光设施菜地土壤砷含量及形态   总被引:1,自引:0,他引:1  
通过典型区域采样调查,系统探讨了山东寿光市设施菜地中砷的含量及其形态特征.结果表明: 设施菜地表层(0~20 cm)和亚表层(20~40 cm)土壤中总砷含量分别为8.27、7.93 mg·kg-1,是对照土壤的1.19和1.23倍,易溶性砷(AE-As)含量分别为0.13、0.06 mg·kg-1,是对照土壤的1.63和3.00倍; 土壤中的砷主要以残渣态砷(O-As)存在,其含量占总砷的63.0%以上,其他形态砷含量依次为铁型砷(Fe-As)>钙型砷(Ca-As)>铝型砷(Al-As)>AE-As; 随着种植年限的延长,土壤中AE-As含量显著增加,Al-As含量也有不同程度提高,种植15 a设施菜地表层和亚表层土壤中的AE-As含量分别比对照提高了75.0%和150.0%,Al-As含量分别提高了51.6%和190.4%,而Fe-As和Ca-As含量则均有不同程度的下降.  相似文献   

11.
Campbell  Linda S.  Davies  B.E. 《Plant and Soil》1997,189(1):65-74
Radioactive caesium (137Cs), from the Chernobyl accident of 1986, has unexpectedly remained in a bioavailable form in upland, sheep-grazing soils of Great Britain. As a potential remedial measure, clinoptilolite was tested in a greenhouse pot experiment for its effectiveness in selectively taking up Cs from two British soils; a lowland loam (Denbigh 1 brown earth) and an upland peat (Crowdy 2 series)Rye-grass, (Lolium perenne, Arno variety) that was grown on 10% (by weight) clinoptilolite-treated soils containing up to 40 mg kg-1 added Cs, resulted in grass leaf tissue Cs concentrations below 30 mg Cs kg-1 grass in all cases. Where no clinoptilolite had been added Cs in grass leaf-tissue reached 1860 mg kg-1 (grown on peat) and 150 mg kg-1 (grown on loam) at added Cs levels of 40 mg kg-1 soil. The addition of calcium carbonate (as ground limestone) to the Cs-treated, clinoptilolite-free peat soil enhanced the grass concentration of Cs by approximately 5 times, but this effect was not observed with the concentration of Cs in grass grown from loam soils with the same treatments. Compositions of clinoptilolite grains subsequently separated from the experimental soils ranged from 7.5 to 9.0 mg Cs kg-1 for the control soils (no added Cs). Soils treated with 40 mg Cs kg-1 gave Cs concentrations in clinoptilolite of 155-170 mg kg-1 (separated from loam) and 347-354 mg kg-1 (separated from peat).  相似文献   

12.
It has been repeatedly demonstrated that phosphate (P) and the herbicide glyphosate compete for adsorption sites in soils. Surprisingly, the potential consequences of these interactions for plants e.g. re-solubilisation of phytotoxic glyphosate residues in soils by application of P fertilisers or by root-induced mechanisms for P mobilization have not been investigated so far. In model experiments under greenhouse conditions, the potential for glyphosate re-mobilisation by P-fertiliser application was evaluated by bio-indication with soybean (Glycine max L.) cultivated on five contrasting soils with or without glyphosate application at 10?C35 days before sowing. Different levels of P-fertilisation (0, 20, 40, 80, 240 mg P kg?1 soil) were supplied at the date of sowing. Visual symptoms of glyphosate toxicity, plant biomass, intracellular shikimate accumulation as physiological indicator for glyphosate toxicity and the plant nutritional status were determined. On glyphosate-treated soils, P application induced significant plant damage. Expression of damage symptoms declined in the order Arenosol > Acrisol ?? Ferralsol > Luvisol subsoil > Regosol. On the Arenosol, Ferralsol and Luvisol subsoil plant damage was associated with increased shikimate accumulation in the root tissue. On the Acrisol decline of germination and plant damage in absence of shikimate accumulation indicate toxicity of AMPA (aminomethylphosphonic acid) as the main metabolite of glyphosate in soils. On the Regosol, a growth-stimulating effect of glyphosate soil application (hormesis) was detected. The results suggest that re-mobilisation of glyphosate may represent an additional transfer pathway for glyphosate to non-target plants which is strongly influenced by soil characteristics such as P fixation potential, content of plant-available iron, pH, cation exchange capacity, sand content and soil organic matter.  相似文献   

13.
Soil phytoextraction is based on the ability of plants to extract contaminants from the soil. For less bioavailable metals, such as Pb, a chelator is added to the soil to mobilize the metal. The effect can be significant and in certain species, heavy metal accumulation can rapidly increase 10-fold. Accumulation of high levels of toxic metals may result in irreversible damage to the plant. Monitoring and controlling the phytotoxicity caused by EDTA-induced metal accumulation is crucial to optimize the remedial process, i.e. to achieve maximum uptake. We describe an EDTA-application procedure that minimizes phytotoxicity by increasing plant tolerance and allows phytoextraction of elevated levels of Pb and Cd. Brassica juncea is tested in soil with typical Pb and Cd concentrations of 500 mg kg-1 and 15 mg kg-1, respectively. Instead of a single dose treatment, the chelator is applied in multiple doses, that is, in several small increments, thus providing time for plants to initiate their adaptation mechanisms and raise their damage threshold. In situ monitoring of plant stress conditions by chlorophyll fluorescence recording allows for the identification of the saturating heavy metal accumulation process and of simultaneous plant deterioration.  相似文献   

14.

Background and aims

Nanoscale zero-valent iron (nZVI) application is a promising technology for degradation of chlorinated contaminants in soil. Plants also play an important role in soil remediation and nZVI should not adversely affect plants growing on treated soils. Large amounts of DDT are still found in certain soils and means to remediate these soils are limited. Our aims were to investigate the effect of nZVI on DDT degradation and evaluate possible negative effects of nZVI on plants.

Methods

Columns with spiked (20 mg DDT kg?1) soil were percolated with nZVI (1 g nZVI L?1) and leached with five pore volumes of water to assess leaching of nZVI and residual toxicity of leachates and soil to plants using seed germination and plant growth tests (barley, flax).

Results

Addition of nZVI led to degradation of 45 % of the added DDT. Percolation with water significantly oxidized and transported iron through the columns. The first leachates had negative effects on plant development, but after leaching with 4 pore volumes, neither soil nor leachates affected plant negatively.

Conclusions

nZVI is efficient for degradation of DDT and adverse effects of nZVI on plants seem ephemeral and are alleviated after oxidation mediated by percolating water.  相似文献   

15.
As a new attempt to control iodine deficiency disorder (IDD), we explored a method of iodine supplementation by raising the iodine content in vegetables. When grown in the soil supplemented with iodized fertilizer, the three experimental plant species (cucumber, aubergine, and radish) show increasing iodine levels in both leaf and fruit/rhizome tissues as the iodine content added in soil increases. Excessive iodine added to soil can be toxic to plants, whereas the tolerance limit to excessive iodine varies in the three plant species tested. The migration and volatilization of iodine in soil is correlated with the properties of the soil used. The residual iodine in soil increases as the iodine added to soil increases. The diatomite in the iodized fertilizer helps to increase the durability of the iodized fertilizer. This study potentially provides a safe and organic iodine supplementation method to control IDD.  相似文献   

16.
Four selenium (Se) nonaccumulator plant species, including a forage grass species, Tall Fescue (Festuca arundinacea Schreb.), a forage legume species, Alfalfa (Medicago sativa L.), a wetland species, Rush (Juncus tenuis Wild.), and a dry-land alkaline soil species, Saltgrass (Distichlis spicata L.), were grown in soil contaminated by agricultural drainage sediment having elevated levels of Se and sulfur (S). The above-ground plant tissues were consecutively harvested five times and examined for Se and S accumulation. Plant tissue Se concentrations ranged from 23.0 mg kg-1 to 8.3 mg kg-1. Tissue S concentrations ranged from 3239 mg kg-1 to 7034 mg kg-1. Both tissue Se and S concentrations were significantly different between harvests, species, and species/harvest interactions. Total Se accumulation by the plant biomass harvested ranged from 0.3 to 1.3 mg per soil column and total S accumulations ranged from 87.5 to 321.1 mg per soil column. The reduction in the percentage of total soil Se after 24 weeks growth of the plant species ranged from 12.0% in the Tall Fescue planting to 17.3% in the Rush planting. Over 90% of the soil Se losses were unidentified losses and leaching of Se was prevented. The accumulations of Se and S in the plant biomass were very small compared with the total soil Se and S losses, but substantial amounts of total soil Se (12.0 to 15.0%) and S (28.0 to 50.9%) inventories were dissipated by the growing and harvesting of the plants. The soil S concentration was several hundred times higher than the soil Se concentration, but Se accumulation by the plants and Se dissipation from the soil were not impaired by the high level of soil sulfur. For natural grassland habitat restoration, such as at the Kesterson Wildlife Refuge in the Central Valley of California, or for restoration of large-scale Se contaminated agricultural lands, Se nonaccumulator plant species are favorable candidates, because the possibility of introducing Se toxicity into the food chain can be minimized.  相似文献   

17.
Field experiments in calcareous and acidic field soils were conducted to study the effects of copper (Cu) and nickel (Ni) added to soils on maize growth and metal accumulation in maize plants. The results revealed that the critical concentrations of Cu added to soils that decreased maize grain yield by 10% (EC10) were 711 mg kg?1 for calcareous soil with a pH of 8.9, and 23 mg kg?1 for acidic soil with a pH of 5.3. The toxicity thresholds of EC10 did not differ significantly for Cu and Ni. A different pattern of Cu and Ni accumulation in maize plants was also found. The accumulation of Cu in above-ground parts of the plants increased initially as the concentrations of Cu added to soils increased, after which they decreased to a constant level. As the concentrations of Ni added to soils increased, the accumulation of Ni in stems and leaves increased linearly, but the accumulation of Ni in the grains was nonlinear. Additionally, the results revealed that Ni was transported to grains more easily than Cu. The results also showed that the concentrations of Cu and Ni in soil solutions as toxicity predictors and the critical concentrations of Cu and Ni in maize were all soil-dependent.  相似文献   

18.
酸沉降影响下庐山森林生态系统土壤硫形态分布研究   总被引:1,自引:0,他引:1  
近年来 ,因农业高产的养分平衡问题及因酸沉降污染问题硫的植物营养与生物地球化学研究日益活跃。至今已有较多研究者对农田和自然土壤中硫含量、形态分布及不同施肥条件和作物对它们的影响进行了研究[1,2 ,12~ 16 ] 。酸沉降影响下森林土壤硫及其去向倍受关注。研究表明 ,在高度风化的土壤上的森林生态系统中SO4 2 - 处于积累状态[17] ,而发育时间较短的土壤上的森林生态系统中SO4 2 - 则处于接近动态平衡的状态[18,19] 。Carlsson等[2 0 ] 利用34S对挪威半岛森林土壤硫形态及其与酸沉降的关系进行了研究 ,认为有机硫和吸附…  相似文献   

19.
Soil samples were collected from 7 sites in the up-, mid- and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg.kg-1 ~1600 mg.kg-1 for mineral oil, 0.33 mg.kg-1~1.81 mg.kg-1 for Cd and 900.16 mg.kg-1~ 2737.91 mg.kg-1 for PAHs. The inhibition rates of root elongation were from -20% up to 40 %, and mortality rates of earthworms ranged from 0%~40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthworm growth were from -19.36% to 34.53%, showing effects of stimulation at 2 weeks to an increasing effects of inhibition at 4, 6 and 8 weeks, respectively. Mortality rates correlated with the loss of body weight of earthworms.This study indicated the potential risk of pollutants of environmental low content in soil by the determination of selected chemicals combined with toxicity indexes.  相似文献   

20.
The discovery of novel accumulating plants is useful for efficient phytoremediation due to the demands of various conditions of impacted sites such as land use, soil properties, concentration of pollutants, and climate. In the present study, we investigated foliar application or a field with highly bioavailable arsenic (As) to screen As-accumulating plants. Plants grown in the downstream of a hot springs area were analyzed for native As accumulation and As foliar application, and the rhizosphere soils were collected. The water-soluble As in the rhizosphere soils had a high average, 144 μg/kg, whereas total As was similar to normal soil in Japan. Among 34 herbaceous plants and 17 woody plants, Chelidonium majus var. asiaticum accumulated a relatively high As level, 8.07 mg/kg DW (93.6% of As added), that was not revealed by native accumulation. In a further pot experiment, C. majus accumulated a moderately high As level (314 mg/kg DW) in the roots but not in the shoot (30.1 mg/kg DW), and exhibited a low transfer factor (TF = 0.096). Thus, a foliar application would be a simple and high-throughput method to screen plants that accumulate and tolerate As. C. majus would be useful as a tool for phytostabilization of As.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号