首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Breeding for preharvest sprouting (PHS) resistance is of great interest in wheat-growing areas where high rainfall occurs during grain ripening and harvest. We have characterized 32 wheat accessions using 33 microsatellite markers flanking PHS quantitative trait loci (QTLs) previously identified on group 3, 4, 5, and 6 chromosomes of hexaploid wheat. A total of 229 alleles, with an average of 6.94 alleles per marker, were observed among the 32 wheat lines. The polymorphic information content (PIC) was estimated and ranged between 0.25 and 0.90, with an average of 0.67. A cluster analysis revealed 3 main clusters and 3 singlet wheat lines, which is in agreement with pedigree-based relationships, seed coat colour, and origin. Canadian wheat accessions were subdivided into 4 sub-clusters based on pedigree and wheat classes. Grouping of preharvest sprouting germplasm into clusters was consistent with cluster-specific allele diversity observed in the PHS-resistant lines AUS1408, Red-RL4137, White-RL4137, and Kenya321. The implications of these findings in white wheat breeding for PHS tolerance are discussed.  相似文献   

2.
Imtiaz M  Ogbonnaya FC  Oman J  van Ginkel M 《Genetics》2008,178(3):1725-1736
Aegilops tauschii, the wild relative of wheat, has stronger seed dormancy, a major component of preharvest sprouting resistance (PHSR), than bread wheat. A diploid Ae. tauschii accession (AUS18836) and a tetraploid (Triticum turgidum L. ssp. durum var. Altar84) wheat were used to construct a synthetic wheat (Syn37). The genetic architecture of PHS was investigated in 271 BC(1)F(7) synthetic backcross lines (SBLs) derived from Syn37/2*Janz (resistant/susceptible). The SBLs were evaluated in three environments over 2 years and PHS was assessed by way of three measures: the germination index (GI), which measures grain dormancy, the whole spike assay (SI), which takes into account all spike morphology, and counted visually sprouted seeds out of 200 (VI). Grain color was measured using both Chroma Meter- and NaOH-based approaches. QTL for PHSR and grain color were mapped and their additive and epistatic effects as well as their interactions with environment were estimated by a mixed linear-model approach. Single-locus analysis following composite interval mapping revealed four QTL for GI, two QTL for SI, and four QTL for VI on chromosomes 3DL and 4AL. The locus QPhs.dpiv-3D.1 on chromosome 3DL was tightly linked to the red grain color (RGC) at a distance of 5 cM. The other locus on chromosome 3D, "QPhs.dpiv-3D.2" was independent of RGC locus. Two-locus analysis detected nine QTL with main effects and 18 additive x additive interactions for GI, SI, and VI. Two of the nine main effects QTL and two epistatic QTL showed significant interactions with environments. Both additive and epistatic effects contributed to phenotypic variance in PHSR and the identified markers are potential candidates for marker-assisted selection of favorable alleles at multiple loci. SBLs derived from Ae. tauschii proved to be a promising tool to dissect, introgress, and pyramid different PHSR genes into adapted wheat genetic backgrounds. The enhanced expression of PHS resistance in SBLs enabled us to develop white PHS-resistant wheat germplasm from the red-grained Ae. tauschii accession.  相似文献   

3.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

4.
J Jakse  K Kindlhofer  B Javornik 《Génome》2001,44(5):773-782
Microsatellites have many desirable marker properties and have been increasingly used in crop plants in genetic diversity studies. Here we report on the characterisation of microsatellite markers and on their use for the determination of genetic identities and the assessment of genetic variability among accessions from a germplasm collection of hop. Thirty-two polymorphic alleles were found in the 55 diploid genotypes, with an average number of eight alleles (3.4 effective alleles) for four microsatellite loci. Calculated polymorphic information content values classified three loci as informative markers and two loci as suitable for mapping. The average observed heterozygosity was 0.7 and the common probability of identical genotypes was 3.271 x 10(-4). An additional locus, amplified by one primer pair, was confirmed by segregation analysis of two crosses. The locus discovered was heterozygous, with a null allele in the segregating population. The same range of alleles was detected in nine triploid and five tetraploid hop genotypes. Cultivar heterozygosity varied among all 69 accessions, with only one cultivar being homozygous at four loci. Microsatellite allele polymorphisms distinguished 81% of all genotypes; the same allelic profile was found mainly in clonally selected cultivars. Cultivar-specific alleles were found in some genotypes, as well as a specific distribution of alleles in geographically distinct hop germplasms. The genetic relationship among 41 hop accessions was compared on the basis of microsatellite and AFLP polymorphisms. Genetic similarity dendrograms showed low correlation between the two marker systems. The microsatellite dendrogram grouped genetically related accessions reasonably well, while the AFLP dendrogram showed good clustering of closely related accessions and, additionally, separated two geographically distinct hop germplasms. The results of microsatellite and AFLP analysis are discussed from the point of view of the applicability of the two marker systems for different aspects of germplasm evaluation.  相似文献   

5.
A set of 24 wheat microsatellite markers, representing at least one marker from each chromosome, was used for the assessment of genetic diversity in 998 accessions of hexaploid bread wheat (Triticum aestivum L.) which originated from 68 countries of five continents. A total of 470 alleles were detected with an average allele number of 18.1 per locus. The highest number of alleles per locus was detected in the B genome with 19.9, compared to 17.4 and 16.5 for genomes A and D, respectively. The lowest allele number per locus among the seven homoeologous groups was observed in group 4. Greater genetic variation exists in the non-centromeric regions than in the centromeric regions of chromosomes. Allele numbers increased with the repeat number of the microsatellites used and their relative distance from the centromere, and was not dependent on the motif of microsatellites. Gene diversity was correlated with the number of alleles. Gene diversity according to Nei for the 26 microsatellite loci varied from 0.43 to 0.94 with an average of 0.77, and was 0.78, 0.81 and 0.73 for three genomes A, B and D, respectively. Alleles for each locus were present in regular two or three base-pair steps, indicating that the genetic variation during the wheat evolution occurred step by step in a continuous manner. In most cases, allele frequencies showed a normal distribution. Comparative analysis of microsatellite diversity among the eight geographical regions revealed that the accessions from the Near East and the Middle East exhibited more genetic diversity than those from the other regions. Greater diversity was found in Southeast Europe than in North and Southwest Europe. The present study also indicates that microsatellite markers permit the fast and high throughput fingerprinting of large numbers of accessions from a germplasm collection in order to assess genetic diversity.  相似文献   

6.
Hybridization and polyploidization are important ways for wheat to evolve and to genetically differentiate. Ninety two simple sequence repeat (SSR) molecular markers, which distributed in A, B, and D genomes , were used to perform genetic comparison between Chuan-W5436 (CW5436), a new wheat variety, and its parents, synthetic hexaploid wheat Syn786 (♀ ) and common wheat Mianyang 26 (My26) (♂). The results indicated that alleles were not genetically transmitted from parents (Syn786 (♀) crossed (My26) (♂) ) to the progeny CW5436 as Mendelian proportions . A new variation on a SSR molecular marker loci with novel additive bands was observed in CW5436 but not found in its parents. It suggested that artificial selective stress was an important factor to promote the frequency of significant deviations of the expected allele, resulting in microsatellite sequences of the progeny changed . The affect of the genetic differentiation of SSR molecular marker loci that occurred in wheat crosses and gene transfer on the genetic evolu1tion of wheat was discussed.  相似文献   

7.
Genetic differences between 20 Chinese wheat (Triticum aestivum L.) landraces highly resistant to Fusarium head blight (FHB) and 4 wheat lines highly susceptible to FHB were evaluated by means of microsatellite markers, in order to select suitable parents for gene mapping studies. Thirty-nine out of 40 microsatellite markers (97.5%) were polymorphic among the 24 wheat genotypes. A total of 276 alleles were detected at the 40 microsatellite loci. The number of alleles per locus ranged from 1 to 16, with an average of 6.9 alleles. Among these microsatellite loci, the largest polymorphism information content (PIC) value was 0.914 (GWM484), while the lowest PIC value was 0 (GWM24). The mean genetic similarity index among the 24 genotypes was 0.419, ranging from 0.103 to 0.673. Clustering analysis indicated that the highly susceptible synthetic wheat line RSP was less genetically related to and more divergent from the Chinese highly resistant landraces. These results were useful in the identification of suitable parents for the development of mapping populations for tagging the FHB resistance genes among these Chinese wheat landraces.  相似文献   

8.
Seed dormancy is an important factor regulating preharvest sprouting (PHS) but is a complex trait for genetic analysis. We previously identified a major quantitative trait locus (QTL) controlling seed dormancy on the long arm of chromosome 4A (4AL) in common wheat. To transfer the QTL from the dormant lines 'OS21-5' and 'Leader' into the Japanese elite variety 'Haruyokoi', which has an insufficient level of seed dormancy, backcrossing was carried out through marker-assisted selection (MAS) using PCR-based codominant markers. Nineteen BC5F2 plants with homozygous alleles of 'OS21-5' or 'Haruyokoi' were developed and evaluated for seed dormancy under greenhouse conditions. The seeds harvested from plants with 'OS21-5' alleles showed a clearly high level of dormancy compared with seeds from plants with 'Haruyokoi' alleles. Additionally, the dormancy phenotype of BC3F3 seeds harvested from 128 BC3F2 plants with homozygous alleles of 'Leader' or 'Haruyokoi' showed a clear difference between these alleles. The QTL on 4AL confers a major gene, Phs1, which was mapped within a 2.6 cM region. The backcrossed lines developed in this study can be important sources for improving PHS resistance in Japanese wheat and for analyzing the mechanism of seed dormancy. MAS was useful for the development of near-isogenic lines in this complex trait, to facilitate the molecular dissection of genetic factors.  相似文献   

9.
Fungal diseases of wheat, including powdery mildew, cause significant crop, yield and quality losses throughout the world. Knowledge of the genetic basis of powdery mildew resistance will greatly support future efforts to develop and cultivate resistant cultivars. Studies were conducted on cultivated emmer-derived wheat line K2 to identify genes involved in powdery mildew resistance at the seedling and adult plant growth stages using a BC1 doubled haploid population derived from a cross between K2 and susceptible cultivar Audace. A single gene was located distal to microsatellite marker Xgwm294 on the long arm of chromosome 2A. Quantitative trait loci (QTL) analysis indicated that the gene was also effective at the adult plant stage, explaining up to 79.0 % of the variation in the progeny. Comparison of genetic maps indicated that the resistance gene in K2 was different from Pm4, the only other formally named resistance gene located on chromosome 2AL, and PmHNK54, a gene derived from Chinese germplasm. The new gene was designated Pm50.  相似文献   

10.
An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple‐sequence repeat (SSR or microsatellite) markers. The lines formed a single population with no evidence for subdivision, because there were several common ancestors of large parts of the pedigree. Quantitative trait loci (QTLs) controlling Septoria resistance were postulated on 11 chromosomes, but 38% of variation was not explained by the identified QTLs. Calculation of best linear unbiased predictions (BLUPs) identified lineages of spring and winter wheat carrying different alleles for resistance and susceptibility. Abundant variation in Septoria resistance may be exploited by crossing well‐adapted cultivars in different lineages to achieve transgressive segregation and thus breed for potentially durable quantitative resistance, whereas phenotypic selection for polygenic quantitative resistance should be effective in breeding cultivars with increased resistance. The most potent allele reducing susceptibility to Septoria, on chromosome arm 6AL, was associated with reduced leaf size. Genes which increase susceptibility to Septoria may have been introduced inadvertently into UK wheat breeding programmes from cultivars used to increase yield, rust resistance and eyespot resistance between the 1950s and 1980s. This indicates the need to consider trade‐offs in plant breeding when numerous traits are important and to be cautious about the use of non‐adapted germplasm.  相似文献   

11.
On the basis of the entire mitochondrial DNA sequence of common wheat, Triticum aestivum, 21 mitochondrial microsatellite loci having more than ten mononucleotide repeats were identified. The mitochondrial microsatellite variability at all loci was examined with 43 accessions from 11 Triticum and Aegilops species involved in wheat polyploidy evolution. Polymorphic banding patterns were obtained at 15 out of 21 mitochondrial microsatellite loci. The number of alleles per polymorphic microsatellite ranged from 2 to 5 with an average of 3.07, and the diversity values (H) ranged from 0.09 to 0.50 with an average of 0.29. These values are almost two third of wheat chloroplast microsatellite values, indicating that variability of mitochondrial microsatellite is much less than that of chloroplast microsatellite. Based on the allele variation at all loci, a total of seven mitochondrial haplotypes were identified among common wheat and its ancestral species. Three diploid species showed their own specific haplotypes and timopheevi group (11 accessions) had three types, whereas 29 accessions of emmer and common wheat groups shared the same haplotype. These results indicate that a single mitochondrial haplotype determined by microsatellite analysis has conservatively been maintained in the evolutionary lineage from wild tetraploid to cultivated hexaploid species.  相似文献   

12.

Key message

One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety “Danby.” The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive?×?additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance.

Abstract

Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar “Danby” and determine their effects, a doubled haploid population derived from a cross of Danby?×?“Tiger” was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6–41.0% of the phenotypic variations. A SNP (SNP?222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP?222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive?×?additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.
  相似文献   

13.
两个镜鲤半同胞家系的遗传多样性及经济性状分析   总被引:1,自引:1,他引:0  
在两个镜鲤半同胞家系中,各随机选取47尾作为实验鱼,测量体重、体长、全长等数量性状,利用24个微卫星分子标记对其进行遗传检测,共检测到57个等位基因,每个基因座的等位基因数为1-6个不等,平均等位基因3.21个,片段长度在134-371bp之间,有效等位基因数Ne为1.00-2.89, 平均观察杂合度Ho为0.00-0.83,平均期望杂合度He为0.00-0.66,平均多态信息含量PIC为0.00-0.58。结果表明:2个家系的遗传多样性处于中度水平,但连锁不平衡分析表明这两个家系在较大的选择压力下,已严重偏离Hardy-Wenberg平衡。利用SPSS程序下的GLM过程对24个微卫星位点与主要经济性状的相关性进行分析,结果发现:HLJ519,HLJ848、HLJ855、HLJE8 4个微卫星位点对镜鲤体重显著影响(p<0.05),其中,位点HLJ519,HLJ848、HLJ855还对体长和全长存在显著影响(p<0.05)。对这些位点基因型所对应的表型均值进行了多重比较,找到了一些对主要经济性状有利的基因型。  相似文献   

14.
Wheat resistance to common bunt is a highly desirable trait for environmentally friendly grain grade protection. Valuable breeding achievements have been made to develop wheat varieties with enhanced resistance to the disease, and mapping of race-specific resistance genes has been reported. However, less is known of the chromosomal regions that control non-race specific resistance to common bunt. In this study, we have characterized a segregating population of 185 doubled haploid spring wheat lines derived from the cross RL4452 × AC Domain. Reactions to a mixture of common bunt races were assessed under field simulated spring-sown conditions in greenhouses in two locations over 2 years. A total 369 polymorphic maker loci including 356 microsatellite loci, five expressed sequences tag (ESTs), and eight genes were used to develop a linkage map. Quantitative trait loci (QTL) analysis using composite interval mapping detected three QTLs associated with common bunt resistance, of which two were located on chromosome 1B and one on chromosome 7A. AC Domain alleles contributed the common bunt resistance at all three QTLs. Usefulness of gene tagging within the identified chromosomal regions for common bunt resistance breeding is discussed.  相似文献   

15.
Bi-directional selective genotyping (BSG) carried out on two opposite groups of F9(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS). Two AAD loci on chromosome arm 3RL coincided with PHSD loci. The AAD locus on chromosome arm 3RS was independent from PHS, whereas that on chromosome 6RL belonged to the PHSR class. AAR-PHSR loci were found on chromosomes 4RS (one locus) and 5R (two loci) and AAE-PHSE loci were identified on chromosomes 1RL (one locus) and 5RL (one locus). Some PHSD loci represented the AAE (chromosomes 1RL, 3RS and 3RL) or AAR classes (chromosome 5RL). AAR and AAE loci not related to PHS were found on chromosomes 1RL, 2R, 3RS, 4R, 6RL and 7RL. On the other hand, several PHS loci (1RL, 3RS, 5RL, 6RS and 7RS) had no effect on alpha-amylase activity. Allele originating from the parental line 541 mapped in six AA loci on chromosomes 2R (two loci), 5R (three loci) and 7R (one locus) exerted opposite effects on PHS and alpha-amylase activity. Differences between the AA and PHS systems of loci may explain the weak correlation between these two traits observed among recombinant inbred lines. Strategies for the breeding of sprouting-resistant varieties with low alpha-amylase and high PHS resistance are discussed.  相似文献   

16.
Association mapping identified quantitative trait loci (QTLs) and the markers linked to pre-harvest sprouting (PHS) resistance in an elite association mapping panel of white winter wheat comprising 198 genotypes. A total of 1,166 marker loci including DArT and SSR markers representing all 21 chromosomes of wheat were used in the analysis. General and mixed linear models were used to analyze PHS data collected over 4 years. Association analysis identified eight QTLs linked with 13 markers mapped on seven chromosomes. A QTL was detected on each arm of chromosome 2B and one each on chromosome arms 1BS, 2DS, 4AL, 6DL, 7BS and 7DS. All except the QTL on 7BS are located in a location similar to previous reports and, if verified, the QTL on 7BS is likely to be novel. Principal components and the kinship matrix were used to account for the presence of population structure but had only a minor effect on the results. Although, none of the QTLs was highly significant across all environments, a QTL on the long arm of chromosome 4A was detected in three different environments and also using the best linear unbiased predictions over years. Although previous reports have identified this as a major QTL, its effects were minor in our biparental mapping populations. The results of this study highlight the benefits of association mapping and the value of using elite material in association mapping for plant breeding programs.  相似文献   

17.
A powdery mildew resistance gene from Triticum urartu Tum. accession UR206 was successfully transferred into hexaploid wheat (Triticum aestivum L.) through crossing and backcrossing. The F1 plants, which had 28 chromosomes and an average of 5.32 bivalents and 17.36 univalents in meiotic pollen mother cells (PMC), were obtained through embryos rescued owing to shriveling of endosperm in hybrid seed of cross Chinese Spring (CS) × UR206. Hybrid seeds were produced through backcrossing F1 with common wheat parents. The derivative lines had normal chromosome numbers and powdery mildew resistance similar to the donor UR206, indicating that the powdery mildew resistance gene originating from T. urartu accession UR206 was successfully transferred and expressed in a hexaploid wheat background. Genetic analysis indicated that a single dominant gene controlled the powdery mildew resistance at the seedling stage. To map and tag the powdery mildew resistance gene, 143 F2 individuals derived from a cross UR206 × UR203 were used to construct a linkage map. The resistant gene was mapped on the chromosome 7AL based on the mapped microsatellite makers. The map spanned 52.1 cM and the order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 7AL. The resistance gene was flanked by the microsatellite loci Xwmc273 and Xpsp3003, with the genetic distances of 2.2 cM and 3.8 cM, respectively. On the basis of the origin and chromosomal location of the gene, it was temporarily designated PmU.  相似文献   

18.
19.
Galaev AV  Babaiants LT  Sivolap IuM 《Genetika》2004,40(12):1654-1661
To reveal sites of the donor genome in wheat crossed with Aegilops cylindrica, which acquired conferred resistance to fungal diseases, a comparative analysis of introgressive and parental forms was conducted. Two systems of PCR analysis, ISSR and SSR-PCR, were employed. Upon use of 7 ISSR primers in genotypes of 30 individual plants BC1 F9 belonging to lines 5/55-91 and 5/20-91, 19 ISSR loci were revealed and assigned to introgressive fragments of Aegilops cylindrica genome in Triticum aestivum. The 40 pairs of SSR primers allowed the detection of seven introgressive alleles; three of these alleles were located on common wheat chromosomes in the B genome, while four alleles, in the D genome. Based on data of microsatellite analysis, it was assumed that the telomeric region of the long arm of common wheat chromosome 6A also changed. ISSR and SSR methods were shown to be effective for detecting variability caused by introgression of foreign genetic material into the genome of common wheat.  相似文献   

20.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号