首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于线粒体Cyt b基因的全长序列探讨闭壳龟类的系统进化   总被引:1,自引:0,他引:1  
采用PCR技术对淡水龟科具闭壳结构的黄缘盒龟、黄额盒龟、金头闭壳龟、潘氏闭壳龟、锯缘龟和白腹摄龟的线粒体Cytb基因的全长序列进行了PCR扩增和序列测定,并结合GenBank中16种淡水龟科物种的同源序列,进行了序列变异和系统发生分析。经C lustalX1.8软件对位排列后共有1154个位点,其中可变位点413个,简约信息位点301个;A+T的平均含量(56.5%)高于G+C(43.5%)。在氨基酸密码子中,第一位富含A,第二位富含T,第三位富含C;碱基转换/颠换率为5.97,碱基替换多发生在密码子第三位。以中华鳖和马来鳖为外群,通过最大简约法,最大似然法和贝叶斯法重建了分子系统树,均具有一致的拓扑结构,结果表明:金头闭壳龟和潘氏闭壳龟最先聚成一支,再和三线闭壳龟聚成一组,说明形态上相似的三种闭壳龟亲缘关系最近;闭壳龟属、盒龟属和单种锯缘龟属聚成一个单系的闭壳龟群,建议合并为闭壳龟属;齿缘龟属和果龟属聚为一支,它们与新的闭壳龟属关系较远,揭示闭壳结构的形成不是由一个共同祖先分化而来;乌龟属、花龟属和拟水龟属三属为并系起源,建议三属可以合并为一属。  相似文献   

2.
The Indochinese box turtle Cuora galbinifrons is a polytypic, critically endangered species from Vietnam, Laos, and Hainan Island, China. We analyze up to 1790bp of mitochondrial DNA under maximum parsimony and maximum likelihood criteria to test if the five historically recognized subspecies represent evolutionary lineages, and to elucidate the relationship of C. galbinifrons to other Cuora. C. galbinifrons is composed of three major mitochondrial DNA clades corresponding to the three subspecies galbinifrons, bourreti, and picturata. These three lineages are also morphologically diagnosable, and consequently we recommend elevating each to full species. Cuora galbinifrons hainanensis nests within the galbinifrons clade, and we retain it as a synonym of galbinifrons, as supported by morphology. Cuora "serrata" is known to be a hybrid of male Cuora mouhotii and female C. galbinifrons, and our findings show that C. "serrata" originates from both female galbinifrons and bourreti. Little or no mitochondrial DNA variation was found among the morphologically distinct species Cuora aurocapitata, Cuora pani, and Cuora trifasciata, for which hypotheses are proposed. Recognizing galbinifrons, bourreti, and picturata as separate species has consequences for ongoing ex situ captive breeding programs and prioritization of in situ conservation activities, particularly in Vietnam.  相似文献   

3.
淡水龟科具闭壳结构龟类分类及系统进化研究进展   总被引:1,自引:0,他引:1  
闭壳龟类是淡水龟科(Bataguridae)中一群具有"闭壳"结构的水栖或半水栖龟类的总称,即腹甲的腹盾和胸盾之间以可动的铰链韧带相连,使背甲和腹甲可以全部或部分闭合,它们是盒龟属(Cistoclemmys)、闭壳龟属(Cuo-ra)、锯缘龟属(Pyxidea)、齿缘龟属(Cyclemys)和果龟属(Notochelys),前4个属的龟类在中国均有分布。近几十年来,由于食用、传统中医药开发和宠物贸易的兴起,导致许多闭壳龟类野生物种数量急剧减少,并且当前许多亚洲闭壳龟的分类工作过多的依赖于市场购买的物种样本,这就使我们对闭壳龟属及种的归属划分变的较困难,因此对闭壳龟类物种种的界限的划分及属间系统发育关系的研究仍然是一个艰巨的挑战。通过对淡水龟科具有闭壳结构龟类的形态学研究,细胞遗传学研究以及分子系统学研究等进行了综述,以期为闭壳龟类的相关保护研究提供参考。  相似文献   

4.
In the present study, we use mtDNA sequence data (cyt b gene) in combination with nuclear DNA sequences (C-mos, Rag2 genes, R35 intron), nuclear genomic fingerprints (ISSR) and morphological data to reveal species diversity within the Southeast Asian leaf turtle genus Cyclemys , a morphologically difficult group comprising cryptic species. Two morphologically distinct major groupings exist, a yellow-bellied species group with three taxa ( Cyclemys atripons , C. dentata , C. pulchristriata ) and a dark-bellied species group. The latter contains besides the morphologically variable C. oldhamii three additional new species ( C. enigmatica n. sp., C. fusca n. sp., C. gemeli n. sp.). According to mtDNA data, C. fusca and C. gemeli constitute with high support the sister group of a clade comprising all other species, indicating that the dark-bellied species are not monophyletic, despite morphological similarity. mtDNA sequences of C. enigmatica , being highly distinct in nuclear genomic markers, do not differ from the sympatric C. dentata , suggesting that the original mitochondrial genome of C. enigmatica was lost due to introgressive hybridization. Morphological discrimination of Cyclemys species is possible using multivariate methods. However, gross morphology of most dark-bellied species on the one hand and of C. atripons and C. pulchristriata on the other is so similar that reliable species determination is only possible when genetic markers are used. The high diversity within Cyclemys requires revision of the IUCN Red List Categories for leaf turtles because the former assessment was based on the wrong assumption that in the entire range of the genus occurs only a single species.  相似文献   

5.
Phylogenetic relationships of the genus Cuora sensu lato (Cuora sensu stricto and Cistoclemmys) and other testudinoid genera were inferred from variations in 882 base positions of mitochondrial 12S and 16S rRNA genes. Results yielded a robust support to the monophyly of a group (Cuora group) consisting of Cuora sensu lato and the monotypic Pyxidea. Within the Cuora group, the continental Cuora (sensu stricto) and the two subspecies of Ci. flavomarginata constituted two well-supported monophyletic groups. Distinctly small interspecific genetic distances in the former groups suggested that in the continent speciations in Cuora took place much later than the primary divergences in the Cuora group, or speciations in other related genera, such as Mauremys. Our analyses failed to provide a substantial support to the monophyly of any other combinations of taxa within the Cuora group, including Cuora in broad and strict senses, and Cistoclemmys as consisting of Ci. galbinifrons and Ci. flavomarginata. Besides these, our results also suggested the non-monophyly for the Batagurinae and the Geoemydinae, and sister relationships of the Bataguridae with Testudinidae rather than with the Emydidae.  相似文献   

6.
The complete sequences of the mitochondrial DNA (mtDNA) control region (CR) ofCistoclemmys flavomarginata, Cistoclemmys galbinifrons, Cuora aurocapitata andCyclemys atripons were amplified by long-polymerase chain reaction (Long-PCR). The lengths were 1207 bp, 1722 bp, 1379 bp and 980 bp, respectively. Combining with the CR sequence ofPyxidea mouhotii (DQ659152), we compared the CR structure, and identified three functional domains (TAS, CD and CSB) in which the conservation sequences (TAS, CSB-F, CSB-1, CSB-2 and CSB-3) were also successfully identified according to their homology to those of other turtles. These 5 turtles have the identical CSB-2 and CSB-3 sequences, and 4 of them have the same CSB-1 sequence while there is one base transversion (T → A) inCy. atripons. We analyzed the variable number of tandem repeat (VNTR) sequences or microsatellites at the 3′ end of CR. The motifs of tandem repeats (7 types) are made up of 2–8 nucleotides, and the copy numbers are from 4 to 48. All of the 5 turtles exceptCy. atripons have the “TATTATAT” repeats and are ended by TA. The results of CR structure analysis displayed that theCuora, Cistoclemmys, andPyxidea have many similarities, but differ fromCyclemys. WithIndotestudo elongate (DQ080043) andIndotestudo forstenii (DQ080044) as outgroups, using the CR sequences (1123bp) excluded the microsatellites at the 3′ end of CR, we constructed the molecular phylogenetic trees using the MP, ML and BI methods. The results showed that there was a strong support to the monophyly of theCuora group consisting ofCuora,Cistoclemmys andPyxidea, which has a close relationship withMauremys andChinemys but far fromCyclemys, which are consistent with the analysis of the CR structure of the 5 turtles.  相似文献   

7.
Turtles are currently the most endangered major clade of vertebrates on earth, and Asian box turtles (Cuora) are in catastrophic decline. Effective management of this diverse turtle clade has been hampered by human-mediated, and perhaps natural hybridization, resulting in discordance between mitochondrial and nuclear markers and confusion regarding species boundaries and phylogenetic relationships among hypothesized species of Cuora. Here, we present analyses of mitochondrial and nuclear DNA data for all 12 currently hypothesized species to resolve both species boundaries and phylogenetic relationships. Our 15-gene, 40-individual nuclear data set was frequently in conflict with our mitochondrial data set; based on its general concordance with published morphological analyses and the strength of 15 independent estimates of evolutionary history, we interpret the nuclear data as representing the most reliable estimate of species boundaries and phylogeny of Cuora. Our results strongly reiterate the necessity of using multiple nuclear markers for phylogeny and species delimitation in these animals, including any form of DNA "barcoding", and point to Cuora as an important case study where reliance on mitochondrial DNA can lead to incorrect species identification.  相似文献   

8.
汪鸣  聂刘旺  郭超文 《遗传》1999,21(5):11-33
本文分析了锯缘摄龟和齿缘摄龟的核型与Ag-NORs,结果:2n均为52,核型模式9+5+12.但锯缘摄龟AN=78,其NOR位于A组No.4的长臂上,而齿缘摄龟AN=76,NOR位于A组的No.7的长臂。作者对这两种摄龟核型的结构特点和NOR位置差异的细胞分类学意义进行了讨论。  相似文献   

9.
The complete 15,831 bp nucleotide sequence of the mitochondrial genome from Elimaea cheni(Phaneropterinae)was determined.The putative initiation codon for cox1 was TTA.The phylogeny of Orthoptera based on different mtDNA datasets were analyzed with maximum likelihood(ML)and Bayesian inference(BI).When all 37 genes(mtDNA)were analyzed simultaneously,the monophyly of Caelifera and Ensifera were recovered in the context of our taxon sampling.The phylogeny of Orthoptera was largely consistent with previous phylogenetie hypotheses.Rhaphidophoridae to be a sister group of Tettigoniidae,and the relationships among four subfamilies of Tettigoniidae were(Phaneropterinae+(Conocephalinae+(Bradyporinae+Tettigoniinae))).Pyrgomorphidae was the most basal group of Caelifera.The relationships among six acridid subfamilies were(Oedipodinae+(Acridinae+(Gomphocerinae+(Oxyinae+(Calliptaminae +Cyrtacanthaeridinae))))).However,we did not recover a monophyletic Grylloidea.Myrmecophilidae clustered into one clade with Gryllotalpidae instead of with Gryllidae.ML and BI analyses of all protein coding genes(using all nucleotide sequence data or excluding the third codon position,and amino acid sequences)revealed a topology identical to that of the entire mtDNA genome dataset.However,22 tRNAs genes excluding the DHU loop and T()C loop(TRNA),and two rRNA genes(RRNA)perform poorly when analyzed as single dataset.Our results suggest that the best phylogenetie inferences were ML and BI methods based on total mtDNA.Excluding tRNA genes,rRNA genes and the third codon position of protein coding genes from dataset and converting nucleotide sequences to amino acid sequences do not positively affect phylogenetic reconstruction.  相似文献   

10.
The complete mitochondrial genome of a troglobite millipede Antrokoreana gracilipes (Verhoeff, 1938) (Dipolopoda, Juliformia, Julida) was sequenced and characterized. The genome (14,747 bp) contains 37 genes (2 ribosomal RNA genes, 22 transfer RNA genes and 13 protein-encoding genes) and two large non-coding regions (225 bp and 31 bp), as previously reported for two diplopods, Narceus annularus (order Spirobolida) and Thyropygus sp. (order Spirostreptida). The A + T content of the genome is 62.1% and four tRNAs (tRNA(Ser(AGN)), tRNA(Cys), tRNA(Ile) and tRNA(Met)) have unusual and unstable secondary structures. Whereas Narceus and Thyropygus have identical gene arrangements, the tRNA(Thr) and tRNA(Trp) of Antrokoreana differ from them in their orientations and/or positions. This suggests that the Spirobolida and Spirostreptida are more closely related to each other than to the Dipolopoda. Three scenarios are proposed to account for the unique gene arrangement of Antrokoreana. The data also imply that the Duplication and Nonrandom Loss (DNL) model is applicable to the order Julida. Bayesian inference (BI) and maximum likelihood (ML) analyses using amino acid sequences deduced from the 12 mitochondrial protein-encoding genes (excluding ATP8) support the view that the three juliformian members are monophyletic (BI 100%; ML 100%), that Thyropygus (Spirostreptida) and Narceus (Spirobolida) are clustered together (BI 100%; ML 83%), and that Antrokoreana (Julida) is a sister of the two. However, due to conflict with previous reports using cladistic approaches based on morphological characteristics, further studies are needed to confirm the close relationship between Spirostreptida and Spirobolida.  相似文献   

11.
Phylogenetic hypotheses for the turtle family Geoemydidae   总被引:10,自引:0,他引:10  
The turtle family Geoemydidae represents the largest, most diverse, and most poorly understood family of turtles. Little is known about this group, including intrafamilial systematics. The only complete phylogenetic hypothesis for this family positions geoemydids as paraphyletic with respect to tortoises, but this arrangement has not been accepted by many workers. We compiled a 79-taxon mitochondrial and nuclear DNA data set to reconstruct phylogenetic relationships for 65 species and subspecies representing all 23 genera of the Geoemydidae. Maximum parsimony (MP) and maximum-likelihood (ML) analyses and Bayesian analysis produced similar, well-resolved trees. Our analyses identified three main clades comprising the tortoises (Testudinidae), the old-world Geoemydidae, and the South American geoemydid genus Rhinoclemmys. Within Geoemydidae, many nodes were strongly supported, particularly based on Bayesian posterior probabilities of the combined three-gene dataset. We found that adding data for a subset of taxa improved resolution of some deeper nodes in the tree. Several strongly supported groupings within the Geoemydidae demonstrate non-monophyly of some genera and possible interspecific hybrids, and we recommend several taxonomic revisions based on available evidence.  相似文献   

12.
We estimated phylogenetic relationships among 16 species of harvest mice using sequences from the mitochondrial cytochrome b (cyt b) gene. Gene phylogenies constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) optimality criteria were largely congruent and arranged taxa into two groups corresponding to the two recognized subgenera (Aporodon and Reithrodontomys). All analyses also recovered R. mexicanus and R. microdon as polyphyletic, although greater resolution was obtained using ML and BI approaches. Within R. mexicanus, three clades were identified with high nodal support (MP and ML bootstrap, Bremer decay and Bayesian posterior probabilities). One represented a subspecies of R. mexicanus from Costa Rica (R. m. cherrii) and a second was distributed in the Sierra Madre Oriental of Mexico. The third R. mexicanus clade consisted of mice from southern Mexico southward to South America. Polyphyly between the two moieties of R. microdon corresponded to the Isthmus of Tehuantepec in southern Mexico. Populations of R. microdon microdon to the east of the isthmus (Chiapas, Mexico) grouped with R. tenuirostris, whereas samples of R. m. albilabris to the west in Oaxaca, Mexico, formed a clade with R. bakeri. Within the subgenus Reithrodontomys, all analyses recovered R. montanus and R. raviventris as sister taxa, a finding consistent with earlier studies based on allozymes and cyt b data. There was also strong support (ML and BI criteria) for a clade consisting of ((R. megalotis, R. zacatecae) (R. sumichrasti)). In addition, cytb gene phylogenies (MP, ML, and BI) recovered R. fulvescens and R. hirsutus (ML and BI) as basal taxa within the subgenus Reithrodontomys. Constraint analyses demonstrated that tree topologies treating the two subgenera (Aporodon and Reithrodontomys) as monophyletic (ML criterion) was significantly better (p>0.036) and supported polyphyly of R. mexicanus (both ML and MP criteria - p>0.013) and R. microdon (MP criterion only for certain topologies; p>0.02). Although several species-level taxa were identified based on multiple, independent data sets, we recommended a conservative approach which will involve thorough analyses of museum specimens including material from type localities together with additional sampling and data from multiple, nuclear gene markers.  相似文献   

13.
《Genome biology》2013,14(3):R28

Background

We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species'' physiological capacities to withstand extreme anoxia and tissue freezing.

Results

Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented.

Conclusions

Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle''s extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.  相似文献   

14.
We isolated Korean soft-shelled turtle, Pelodiscus sinensis, mitochondrial DNA by long-polymerase chain reaction (long-PCR) with conserved primers and sequenced this mitochondrial genome (mitogenome) with primer walking using flanking sequences. The P. sinensis mitochondrial DNA has 17,042 bp and its structural organization is conserved compared to those of other reptiles and mammals. To unveil the phylogenetic relationship of the turtles, we used the NJ, MP, and ML analysis methods after inferring those sequences from the mitochondrial 16S rRNA gene. We also compared two P. sinensis variants from Korea and China using the mitochondrial genome. In this study, we report the basic characteristics of the P. sinensis mitochondrial genome, including structural organization and base composition of the rRNAs, tRNAs and protein-coding genes, as well as characteristics of tRNAs. These features are applicable for the study of phylogenetic relationships in turtles.  相似文献   

15.
Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor maximum likelihood (ML), so BI has generally been assumed to share ML''s desirable statistical properties, such as largely unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically high support as sequence length approaches infinity. BI''s long branch attraction bias is relatively weak when the true model is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is incorporated in the model. This bias—which is apparent under both controlled simulation conditions and in analyses of empirical sequence data—also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML. Surprisingly, BI''s bias is caused by one of the method''s stated advantages—that it incorporates uncertainty about branch lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable framework for modern phylogenetic analysis.  相似文献   

16.
《Annales de Paléontologie》2019,105(4):305-315
With more than 50 extant turtle species, Southeast Asia is currently a hotspot of turtle biodiversity. However, the distribution areas of most species are decreasing as a consequence of human activities. The causes of this decline are multiple: habitat and natural resources destruction, introduction of invasive species, hunting, etc. Historical data are however still lacking for a detailed understanding of that regional trend as well as for forecasting its evolution in the future. Indeed, while oral testimonies and text data can provide a rather good appreciation of the decline of biodiversity over the last few decades; nothing is known about the dynamic of turtle biodiversity over the Holocene. This lack of data is especially damaging in area where human activities are interacting for a long time with the wild fauna, as the central plain of Thailand, which is now dominated by agricultural landscape. In order to solve these issues, we investigated five Holocene localities in Thai central plain which provided assemblages of turtle remains ranging from Neolithic to Dvaravati periods (4000 to 1000 BP). The studied archaeological assemblages showed a very high species richness. Species such as Malayemys macrocephala, Cuora amboinensis, Heosemys annandalii, Heosemys grandis, Siebenrockiella crassicolis, Amyda ornata were among the most abundant. We also found several plates and a cranial material belonging to a species of the genus Batagur and tortoise remains including Indotestudo elongata and a few plates belonging to the genus Geochelone. The Batagur and Geochelone genera are absent from living turtle assemblages in the central plain but are present in Myanmar, Cambodia, Indonesia or Southern Thailand for Batagur and far in the West for Geochelone (Myanmar) respectively. Batagur is usually found in coastal areas and its disappearance from central plain is interpreted as resulting from the destruction of a fragile habitat and possibly from the rapid geomorphological evolution of the Chao-Phraya deltaic plain, the disappearance of tortoises could result from deforestation. Cutting traces showed that most turtles were used as food resources at these times, suggesting that turtle hunting was a common practise. Furthermore, occurrence of holes in the margin of the carapace of specimens from Kheed Khin (Saraburi Province) and Promthin Tai (Lopburi Province) suggests that turtles were sometimes kept captive alive or transported. This study shows that investigation of recent fossil localities allows for a better understanding of the role of past human populations in the alteration of the biodiversity through time, and for a more accurate estimation of the rates of species extinction.  相似文献   

17.
本研究通过黄喉拟水龟Mauremys mutica(♀)与三线闭壳龟Cuora trifasciata(♂)进行杂交,成功获得了杂种龟。这说明黄喉拟水龟和三线闭壳龟是可以进行属间远缘杂交的,但杂交组合的受精率及孵化成功率均低于黄喉拟水龟的同种组合。杂种稚龟与黄喉拟水龟稚龟在背甲纹路、腹甲黑斑、四肢和尾腹面的皮肤颜色、喉盾前端形状及起点位置、喉盾宽/喉盾缝长、喉盾缝长/肱盾缝长、股盾缝长/肛盾缝长存在差异。1龄前,杂种龟生长快于黄喉拟水龟。形态特征上,杂种龟头顶部淡棕黄色,头侧眼后有两条黑色纵纹,颈腹部淡黄色;背甲棕色,腹甲浅黄色,每一盾片中间都有边缘呈放射状的黑斑;四肢、尾腹面及裸露皮肤部分为黄褐色。形态可量数据分析显示杂种龟在形态上接近黄喉拟水龟。建立了三种龟的形态判别公式,判别的准确率为100%(p<0.01),判别分析中贡献最大的4个变量分别是腹甲后半部长/背甲长、喉盾宽/背甲长、肱盾缝长/背甲长、股盾缝长/背甲长,可见三线闭壳龟、黄喉拟水龟与杂交种腹部的腹甲后半部长、喉盾宽、肱盾缝长、股盾缝长等参数可作为鉴别三者的直接依据。本实验的结果对杂种龟的鉴定、龟类的杂交育种及养殖生产实践都有一定的借鉴作用。  相似文献   

18.
化石闭壳龟的新发现   总被引:2,自引:1,他引:1  
闭壳龟(Cuora)是龟科(Emydidae)中的一个现生属,有6个现生种,分布于东亚和东南亚,我国产4种。为该地区龟类动物中的一个小类群,以前未有化石发现。本文记述的是闭壳龟属的一个化石新种(Cuora pitheca,sp.nov.),时代为上新世早期。这是该属龟类的首次化石记录。它的发现,不仅把闭壳龟属的历史从现代推至上新世早期,并为探讨该龟类的进化和分布提供重要资料。  相似文献   

19.
The order Archaeognatha was an ancient group of Hexapoda and was considered as the most primitive of living insects. Two extant families (Meinertellidae and Machilidae) consisted of approximately 500 species. This study determined 3 complete mitochondrial genomes and 2 nearly complete mitochondrial genome sequences of the bristletail. The size of the 5 mitochondrial genome sequences of bristletail were relatively modest, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The gene orders were identical to that of Drosophila yakuba and most bristletail species suggesting a conserved genome evolution within the Archaeognatha. In order to estimate archaeognathan evolutionary relationships, phylogenetic analyses were conducted using concatenated nucleotide sequences of 13 protein-coding genes, with four different computational algorithms (NJ, MP, ML and BI). Based on the results, the monophyly of the family Machilidae was challenged by both datasets (W12 and G12 datasets). The relationships among archaeognathan subfamilies seemed to be tangled and the subfamily Machilinae was also believed to be a paraphyletic group in our study.  相似文献   

20.
The complete mitochondrial genome (mitogenome) of the Chinese pistacia looper Biston panterinaria was sequenced and annotated (15,517 bp). It contains the typical 37 genes of animal mitogenomes and a high A + T content (79.5%). All protein coding genes (PCGs) use standard ATN initiation codons except for cytochrome c oxidase 1 (COX1) with CGA. Eleven PCGs use a common stop codon of TAA or TAG, whereas COX2 and NADH dehydrogenase 4 (ND4) use a single T. All transfer RNA (tRNA) genes have the typical clover-leaf structure with the exception of tRNASer(AGN). We reconstructed a preliminary mitochondrial phylogeny of six ditrysian superfamilies and performed comparative analyses of inference methods (Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP)), dataset compositions (including and excluding 3rd codon positions), and alignment methods (Muscle, Clustal W, and MAFFT). Our analyses indicated that inference methods and dataset compositions more significantly affected the phylogenetic results than alignment methods. BI analysis consistently revealed uncontroversial relationships with all dataset compositions. By contrast, ML analysis failed to reconstruct stable phylogeny at two nodes, whereas MP analysis had more difficulties in the tree resolution and nodal support. Distinct from most previous studies, our analyses revealed that Geometroidea had a closer lineage relationship with Bombycoidea than Noctuoidea. Similar to previous molecular studies, our analyses revealed that Hesperiidae were nested in the Papilionoidea clade, providing further evidence to the previous concept that Papilionoidea was paraphyletic, and none of the butterflies were associated with the Macroheterocera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号