首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We present a phylogenetic hypothesis and novel, rank-free classification for all extant species of softshell turtles (Testudines:Trionychidae). Our data set included DNA sequence data from two mitochondrial protein-coding genes and a approximately 1-kb nuclear intron for 23 of 26 recognized species, and 59 previously published morphological characters for a complimentary set of 24 species. The combined data set provided complete taxonomic coverage for this globally distributed clade of turtles, with incomplete data for a few taxa. Although our taxonomic sampling is complete, most of the modern taxa are representatives of old and very divergent lineages. Thus, due to biological realities, our sampling consists of one or a few representatives of several ancient lineages across a relatively deep phylogenetic tree. Our analyses of the combined data set converge on a set of well-supported relationships, which is in accord with many aspects of traditional softshell systematics including the monophyly of the Cyclanorbinae and Trionychinae. However, our results conflict with other aspects of current taxonomy and indicate that most of the currently recognized tribes are not monophyletic. We use this strong estimate of the phylogeny of softshell turtles for two purposes: (1) as the basis for a novel rank-free classification, and (2) to retrospectively examine strategies for analyzing highly homoplasious mtDNA data in deep phylogenetic problems where increased taxon sampling is not an option. Weeded and weighted parsimony, and model-based techniques, generally improved the phylogenetic performance of highly homoplasious mtDNA sequences, but no single strategy completely mitigated the problems of associated with these highly homoplasious data. Many deep nodes in the softshell turtle phylogeny were confidently recovered only after the addition of largely nonhomoplasious data from the nuclear intron.  相似文献   

2.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

3.
The members of the genus Heterixalus constitute one of the endemic frog radiations in Madagascar. Here we present a complete species-level phylogeny based on DNA sequences (4876 base pairs) of three nuclear and four mitochondrial markers to clarify the phylogenetic relationships among and within all known species of this genus, as well as the phylogenetic position of the monospecific Seychellean Tachycnemis seychellensis. Although the performance to resolve supported clades of Heterixalus species differed among the investigated gene fragments when analyzed separately, we could identify five well-supported species groups within Heterixalus in the combined analysis of all gene fragments. Our data strongly support a Heterixalus-Tachycnemis clade, and indicate the probable monophyly of Heterixalus placed sister to Tachycnemis. However, the diversification of these lineages may have happened in a short interval of time, leading to an unstable placement of Tachycnemis in the single-gene fragment phylogenies. Referring to the hitherto existing classification of Heterixalus, which is predominantly based on chromatic and bioacoustic characters, we examined the relative performance of these data sets relative to our molecular phylogeny. A Bayesian tree reconstructed with a bioacoustic data set yielded a higher resemblance to the molecular phylogeny than a tree constructed using a chromatic data set, which supports the importance of bioacoustic characters for systematic analyses of these anurans.  相似文献   

4.
The common raven (Corvus corax) is one of the most widely distributed and recognizable avian species in the world. Recent molecular work, however, described two mitochondrial lineages of the common raven, termed the Holarctic clade and the California clade, and questioned the monophyly of this taxon by placing the Chihuahuan raven (C. cryptoleucus) sister to the California clade. We evaluated this phylogenetic hypothesis with additional sequence data and increased taxon sampling. We used ~3.7 kb of DNA sequence data from sections of the mitochondrial coding genes COI, cyt b and ND4, a fragment of the non‐coding mitochondrial DNA control region, and the entire intron 7 of the nuclear β‐fibrinogen gene (β‐fibint 7). We combined these DNA sequence data to erect hypotheses of relationships for lineages of the common raven and related taxa. Maximum parsimony, maximum likelihood, and Bayesian methods yield a paraphyletic common raven. These analyses nest the Chihuahuan raven within the common raven, with strong support for a sister relationship between the Chihuahuan raven and the California clade. In addition, the pied crow (C. albus) is also nested within the common raven, and is sister to the Holarctic clade. Our analyses reveal the challenge of determining phylogenetic relationships and species boundaries in this morphologically conservative genus, and suggest that future molecular work with increased taxon sampling will uncover cryptic species and novel evolutionary relationships. Lastly, this survey is one of a growing number of avian phylogenetic studies to employ either β‐fibint 7 or COI, and the first to use ND4. We developed a simple procedure for comparing rates of evolution in molecular markers, and show that in Corvus the nuclear intron β‐fibint 7 is evolving at a considerably slower pace than the mitochondrial markers, while COI is evolving at a slower rate than cyt b, and ND4 approximately the same rate as cyt b. Hence, β‐fibint 7 and other individual nuclear introns may have limited utility in resolving relationships among recently evolved taxa, whereas both COI and ND4 should be useful in a wide range of avian molecular genetic investigations.  相似文献   

5.
A well-supported molecular phylogeny for North American Gryllus species based on a combined data set of mitochondrial (mt) DNA is presented. A total of 26 individuals representing 13 populations of 11 species of the genus Gryllus and 4 individuals of two outgroup species, Teleogryllus oceanicus and Acheta domestica, were sampled in this study. The complete cytochrome b gene (1036 bp) and a 500-bp fragment of the 16S rRNA gene were sequenced for each individual. Since results from separate analyses of the cytochrome b and 16S data sets, as well as a previously published mtDNA restriction-site data set, were not conflicting, all data were combined for phylogenetic analyses. The clade of European Gryllus was clearly separated from the North American clade. The amount of sequence divergence between these clades was significantly greater than within the clades, suggesting a basal drift-vicariant event in the genus. This is the first phylogenetic analysis of North American Gryllus that includes western species. Four well-supported groups were identified but their relationships showed no clear east-west structure. Our phylogeny supports the recent reassignment of G. integer Scudder 1901 from Texas to G. texensis Cade and Otte 2000. The evolution of cricket song and life cycle is discussed using the new phylogenetic framework.  相似文献   

6.
Investigations into the phylogenetics of closely related animal species are dominated by the use of mitochondrial DNA (mtDNA) sequence data. However, the near-ubiquitous use of mtDNA to infer phylogeny among closely related animal lineages is tempered by an increasing number of studies that document high rates of transfer of mtDNA genomes among closely related species through hybridization, leading to substantial discordance between phylogenies inferred from mtDNA and nuclear gene sequences. In addition, the recent development of methods that simultaneously infer a species phylogeny and estimate divergence times, while accounting for incongruence among individual gene trees, has ushered in a new era in the investigation of phylogeny among closely related species. In this study we assess if DNA sequence data sampled from a modest number of nuclear genes can resolve relationships of a species-rich clade of North American freshwater teleost fishes, the darters. We articulate and expand on a recently introduced method to infer a time-calibrated multi-species coalescent phylogeny using the computer program *BEAST. Our analyses result in well-resolved and strongly supported time-calibrated darter species tree. Contrary to the expectation that mtDNA will provide greater phylogenetic resolution than nuclear gene data; the darter species tree inferred exclusively from nuclear genes exhibits a higher frequency of strongly supported nodes than the mtDNA time-calibrated gene tree.  相似文献   

7.
The genus Scytalopus is a species-rich and taxonomically complicated component of the Neotropical avian family Rhinocryptidae. Probably because Scytalopus is a superficially uniform assemblage, its monophyly has not been seriously questioned. We investigated phylogenetic relationships of a representative set of species in the genus using nuclear and mitochondrial DNA sequences as well as anatomical data, and provided the first test of its presumed monophyly by including in the analyses its hypothesized closest relatives (the genera Myornis, Eugralla, and Merulaxis) as well as most rhinocryptid genera. We found strong support for the paraphyly of the genus Scytalopus, with the Scytalopus indigoticus species-group forming a clade with Merulaxis. A well-supported clade including the genera Eugralla, Myornis, and the remaining Scytalopus was also recovered. Because these results were recovered independently and with strong support using mitochondrial and nuclear data, and were entirely consistent with anatomical data, we erect a new genus for the S.indigoticus species-group. These findings illustrate the importance of formally testing hypotheses of monophyly even for well-accepted groups of Neotropical birds.  相似文献   

8.
The phylogenetic relationship between Buthus occitanus populations across the Strait of Gibraltar was investigated using nuclear 18S/ITS-1 DNA sequences and mitochondrial 16S and COI DNA sequences. All analyses showed that the European samples are highly separated from North African samples, and also suggest the existence of three main groups within this species complex, i.e., an European, an Atlas (=Moroccan samples) and a Tell-Atlas group (=Tunisian samples). The European clade was subdivided into three distinct subclades. The application of a previous calibration of the molecular clock of another buthid species suggested that most of the detected mitochondrial DNA lineages including the European lineages are about three times older than the re-opening of the Gibraltar Strait, and consequently, that other and older vicariant events are responsible for the observed phylogeographic structure of this species complex. Concerning the Moroccan samples, a discordance between nuclear and mitochondrial gene markers was observed. The 18S/ITS-1 gene tree could not resolve the phylogenetic relationships among the Moroccan B. occitanus subspecies and the closely related species B. atlantis, whereas mitochondrial genes suggested the co-existence of several old phylogenetic lineages in Morocco. We hypothesized that this difference may be explained by male-biased gene flow and gene conversion at the tandemly repeated 18S/ITS-1 gene regions.  相似文献   

9.
An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atpl, matR, had5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales-Oxalidales-Malpighiales) clade is sister to malvids (or rosid Ⅱ), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene-based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non-molecular data to reconstruct the underlying organismal phylogeny.  相似文献   

10.
Asian box turtles (genus Cuora, family Geoemydidae) comprise a clade of 12 aquatic and semiaquatic nominate species distributed across southern China and Southeast Asia. Over the last two decades, turtles throughout Asia have been harvested at an unsustainable rate to satisfy demands for food, traditional Chinese medicine, and the pet trade. Consequently, all species of Cuora were recently placed on the IUCN Red List, nine are currently listed as critically endangered by the IUCN, and all species are listed in Appendix II of CITES. We compiled a 67-specimen mitochondrial (∼1,650 base pairs (bp) from two mitochondrial genes) and a 40-specimen nuclear-plus-mitochondrial (∼3,900 bp total, three nuclear introns plus an additional ∼860 bp mitochondrial gene fragment) DNA data set to reconstruct the phylogeny of Cuora species and to assess genetic diversity and species boundaries for several of the most problematic taxa. Our sampling included 23 C. trifasciata, 17 C. zhoui and 1–4 individuals of the remaining 10 species of Cuora. Maximum likelihood, maximum parsimony and Bayesian analyses all recovered similar, well resolved trees. Within the Cuora clade, mitochondrial and nuclear sequence data indicated that both C. zhoui and C. mccordi represent old lineages with little or no history of interspecific gene flow, suggesting that they are good genealogical species. Based on mtDNA, Cuora pani was paraphyletic and C. trifasciata was composed of two highly divergent lineages that were not each other’s closest relatives; both cases of non-monophyly were due to a mtDNA sequence that was widespread and identical in C. aurocapitata, C. pani and C. trifasciata. However, when combined with nuclear DNA results, our data indicate that C. trifasciata is a single, monophyletic taxon, and that mitochondrial introgression and nuclear-mitochondrial pseudogenes have led to a complex pattern of mitochondrial gene relationships that does not reflect species-level histories. Our results imply that captive “assurance colonies” of both C. trifasciata and C. pani should be genotyped to identify pure, non-hybrid members of both taxa, and we recommend that introgressed and pure taxa be managed as independent entities until the full evolutionary histories of these critically endangered turtles are resolved.  相似文献   

11.
The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species.  相似文献   

12.
The superfamily Gelechioidea (Lepidoptera: Obtectomera) has a high species diversity. It consists of more than 18,400 described species and has a global distribution. Among it, large numbers of species were reported to be economically important to people's production and life. However, relationships among families or subfamilies in Gelechioidea have been exceptionally difficult to resolve using morphology or single gene genealogies. Multiple gene genealogies had been used in the molecular phylogenetic studies on Gelechioidea during the past years, but their phylogenetic relationships remain to be controversial mainly due to their limited taxa sampling relative to such high species diversity. In this paper, 89 ingroup species representing 55 genera are sequenced and added to the data downloaded from GenBank, and six species representing four closely related superfamilies are chosen as outgroup. The molecular phylogeny of Gelechioidea is reconstructed based on the concatenated data set composed of one mitochondrial marker (COI) and seven nuclear markers (CAD, EF-1ɑ, GAPDH, IDH, MDH, RpS5, wingless). The phylogenetic results, taking into consideration of the comparative morphological study, show that the clade of Gelechioidea is strongly supported and separated from other superfamilies, which further proves its monophyly. Five families are newly defined: Autostichidae sensu nov., Depressariidae sensu nov., Peleopodidae sensu nov., Ashinagidae sensu nov. and Epimarptidae sensu nov. Meanwhile, a monophyletic “SSABM” clade considered to be closely related is proposed for the first time, consisting of Stathmopodidae, Scythrididae, Ashinagidae, Blastobasidae and Momphidae. Moreover, geometric morphometric analyses using merged landmark data set from fore and hind wings of 118 representative species are conducted. The phenetic tree shows that the monophyly and phylogenetic relationships correspond with the results of molecular phylogeny largely, which well proves its importance and potential application in both phylogenetic reconstruction and species identification.  相似文献   

13.
It has proven remarkably difficult to obtain a well-resolved and strongly supported phylogeny for horned lizards (Phrynosoma) because of incongruence between morphological and mitochondrial DNA sequence data. We infer the phylogenetic relationships among all 17 extant Phrynosoma species using >5.1 kb of mtDNA (12S rRNA, 16S rRNA, ND1, ND2, ND4, Cyt b, and associated tRNA genes), and >2.2kb from three nuclear genes (RAG-1, BDNF, and GAPD) for most taxa. We conduct separate and combined phylogenetic analyses of these data using maximum parsimony, maximum likelihood, and Bayesian methods. The phylogenetic relationships inferred from the mtDNA data are congruent with previous mtDNA analyses based on fewer characters and provide strong support for most branches. However, we detected strong incongruence between the mtDNA and nuclear data using comparisons of branch support and Shimodaira-Hasegawa tests, with the (P. platyrhinos+P. goodei) clade identified as the primary source of this conflict. Our analysis of a P. mcalliixP. goodei hybrid suggests that this incongruence is caused by reticulation via introgressive hybridization. Our preferred phylogeny based on an analysis of the combined data (excluding the introgressed mtDNA data) provides a new framework for interpreting character evolution and biogeography within Phrynosoma. In the context of this improved phylogeny we propose a phylogenetic taxonomy highlighting four clades: (1) Tapaja, containing the viviparous short-horned lizards P. ditmarsi, P. hernandesi, P. douglasii, and P. orbiculare; (2) Anota, containing species with prominent cranial horns (P. solare, P. mcallii, and the P. coronatum group); (3) Doliosaurus, containing three species lacking antipredator blood-squirting (P. modestum, P. platyrhinos, and P. goodei); and (4) Brevicauda, containing two viviparous species with extremely short tails that lack blood-squirting (P. braconnieri and P. taurus).  相似文献   

14.
Labyrinth fishes (Perciformes: Anabantoidei) are primary freshwater fishes with a disjunct African-Asian distribution that exhibit a wide variety of morphological and behavioral traits. These intrinsic features make them particularly well suited for studying patterns and processes of evolutionary diversification. We reconstructed the first molecular-based phylogenetic hypothesis of anabantoid intrarelationships using both mitochondrial and nuclear nucleotide sequence data to address anabantoid evolution. The mitochondrial data set included the complete cytochrome b, partial 12S rRNA, complete tRNA Val, and partial 16S rRNA genes (3332 bp) of 57 species representing all 19 anabantoid genera. The nuclear data set included the partial RAG1 gene (1494 bp) of 21 representative species. The phylogenetic analyses of a combined (mitochondrial+nuclear) data set recovered almost fully resolved trees at the intrafamily level with different methods of phylogenetic inference. Phylogenetic relationships at this taxonomic level were compared with previous morphology-based hypotheses. In particular, the enigmatic pike-head (Luciocephalus) was confidently placed within the "spiral egg" clade, thus resolving the long-standing controversy on its relative phylogenetic position. The molecular phylogeny was used to study the evolution of the different forms of parental care within the suborder. Our results suggest that the evolution of breeding behavior in anabantoids is highly correlated with phylogeny, and that brood care evolved three times independently from an ancestral free spawning condition without parental care. Ancestral character state reconstructions under maximum parsimony and maximum likelihood further indicated that both bubble nesting and mouthbrooding have evolved recurrently during anabantoid evolution. The new phylogenetic framework was also used to test alternative biogeographic hypotheses that account for the disjunct African-Asian distribution. Molecular divergence time estimates support either a drift vicariance linked to the breakup of Gondwana or Late Mesozoic Early Tertiary dispersal from Africa to Asia or vice versa.  相似文献   

15.
I investigated the phylogenetic relationships within the New World Blepharida and among related genera, using sequences of the Internal Transcriber Spacer 2 (ITS2) of nuclear ribosomal DNA and sequences of the COI and COII genes of the mitochondrial genome. Cladistic analyses were performed using parsimony, maximum likelihood, and Bayesian methods. These methods generated almost identical topologies using the combined data sets. The analyses suggest that Blepharida rhois, the type species, should be separated from the New World Blepharida and that the New World Blepharida might be congeneric with closely related Notozona. Also, according to this phylogeny, all of the New World Blepharida species that feed on Bursera (Burseraceae) form a single monophyletic clade, with the Afrotropical species forming its sister clade. The analyses also identified four main groups of species within the New World Blepharida.  相似文献   

16.
The avian family Accipitridae has historically been divided into subfamilies or tribes based on features such as general resemblance, feeding ecology, and behavior. Consequently, the monophyly of those groups has been questionable. Recently, three phylogenetic analyses of a majority of the genera have appeared, one based on osteology, one on DNA sequences from a single mitochondrial gene, and the third on mitochondrial plus nuclear DNA sequences, and the resulting phylogenies were in substantial disagreement concerning the composition and basal branching patterns of the clades and hence require further analysis and confirmation. Here we use DNA sequences from the large nuclear RAG-1 exon to investigate the phylogenetic relationships of these birds. Our results largely corroborated the prior study that included nuclear genes. We found strong support for a monophyletic clade comprising the secretarybird Sagittarius serpentarius , the osprey Pandion haliaetus , and the traditional accipitrids. However, every one of the traditionally recognized subfamilies of accipitrids was found to be polyphyletic. The most basal nodes in the phylogeny separate small clades of insectivorous and scavenger species, such as kites and Old World vultures, from the rest of the family. The speciose genera of bird and mammal predators are all relatively derived (terminal) in the phylogeny. Many of the basal clades are cosmopolitan in their distributions, consistent with the great mobility of these raptors. A new classification is proposed that eliminates the problem of polyphyletic intrafamilial taxa.  相似文献   

17.
Threadfin breams and relatives of the family Nemipteridae comprise 69 currently recognized species in five genera. They are found in the tropical and subtropical Indo‐West Pacific and most are commercially important. Using recently developed molecule‐based approaches exploiting DNA sequence variation among species/specimens, this study reconstructed a comprehensive phylogeny of the Nemipteridae, examined the validity of species and explored the cryptic diversity of the family, and tested previous phylogenetic hypotheses. A combined data set (105 taxa from 41 morphospecies) with newly determined sequences from two nuclear genes (RAG1 and RH) and one mitochondrial gene (COI), and a data set with only COI gene sequences (329 newly obtained plus 328 from public databases from a total of 53 morphospecies) were used in the phylogenetic analysis. The latter was further used for species delimitation analyses with two different tools to explore species diversity. Our phylogenetic results showed that all the currently recognized genera were monophyletic. The monotypic genus Scaevius is the sister group of Pentapodus and they together are sister to Nemipterus. These three genera combined to form the sister group of the clade comprising Parascolopsis and Scolopsis. The validity of most of the examined species was confirmed except in some cases. The combined evidence from the results of different analyses revealed a gap in our existing knowledge of species diversity in the Nemipteridae. We found several currently recognized species contain multiple separately evolving metapopulation lineages within species; some lineages should be considered as new species for further assignment. Finally, some problematic sequences deposited in public databases (probably due to misidentification) were also revised in this study to improve the accuracy for prospective DNA barcoding work on nemipterid fishes.  相似文献   

18.
The phylogeny of salmonid fishes has been the focus of intensive study for many years, but some of the most important relationships within this group remain unclear. We used 269 Genbank sequences of mitochondrial DNA (from 16 genes) and nuclear DNA (from nine genes) to infer phylogenies for 30 species of salmonids. We used maximum parsimony and maximum likelihood to analyze each gene separately, the mtDNA data combined, the nuclear data combined, and all of the data together. The phylogeny with the best overall resolution and support from bootstrapping and Bayesian analyses was inferred from the combined nuclear DNA data set, for which the different genes reinforced and complemented one another to a considerable degree. Addition of the mitochondrial DNA degraded the phylogenetic signal, apparently as a result of saturation, hybridization, selection, or some combination of these processes. By the nuclear-DNA phylogeny: (1) (Hucho hucho, Brachymystax lenok) form the sister group to (Salmo, Salvelinus, Oncorhynchus, H. perryi); (2) Salmo is the sister-group to (Oncorhynchus, Salvelinus); (3) Salvelinus is the sister-group to Oncorhynchus; and (4) Oncorhynchus masou forms a monophyletic group with O. mykiss and O. clarki, with these three taxa constituting the sister-group to the five other Oncorhynchus species. Species-level relationships within Oncorhynchus and Salvelinus were well supported by bootstrap levels and Bayesian analyses. These findings have important implications for understanding the evolution of behavior, ecology and life-history in Salmonidae.  相似文献   

19.
Investigating the evolutionary relationships of the major groups of Apicomplexa remains an important area of study. Morphological features and host-parasite relationships continue to be important in the systematics of the adeleorinid coccidia (suborder Adeleorina), but the systematics of these parasites have not been well-supported or have been constrained by data that were lacking or difficult to interpret. Previous phylogenetic studies of the Adeleorina have been based on morphological and developmental characters of several well-described species or based on nuclear 18S ribosomal DNA (rDNA) sequences from taxa of limited taxonomic diversity. Twelve new 18S rDNA sequences from adeleorinid coccidia were combined with published sequences to study the molecular phylogeny of taxa within the Adeleorina and to investigate the evolutionary relationships of adeleorinid parasites within the Apicomplexa. Three phylogenetic methods supported strongly that the suborder Adeleorina formed a monophyletic clade within the Apicomplexa. Most widely recognized families within the Adeleorina were hypothesized to be monophyletic in all analyses, although the single Hemolivia species included in the analyses was the sister taxon to a Hepatozoon sp. within a larger clade that contained all other Hepatozoon spp. making the family Hepatozoidae paraphyletic. There was an apparent relationship between the various clades generated by the analyses and the definitive (invertebrate) host parasitized and, to lesser extent, the type of intermediate (vertebrate) host exploited by the adeleorinid parasites. We conclude that additional taxon sampling and use of other genetic markers apart from 18S rDNA will be required to better resolve relationships among these parasites.  相似文献   

20.
The Drosophila obscura species group has served as an important model system in many evolutionary and population genetic studies. Despite the amount of study this group has received, some phylogenetic relationships remain unclear. While individual analysis of different nuclear, mitochondrial, allozyme, restriction fragment, and morphological data partitions are able to discern relationships among closely related species, they are unable to resolve relationships among the five obscura species subgroups. A combined analysis of several nucleotide data sets is able to provide resolution and support for some nodes not seen or well supported in analyses of individual loci. A phylogeny of the obscura species group based on combined analysis of nucleotide sequences from six mitochondrial and five nuclear loci is presented here. The results of several different combined analyses indicate that the Old World obscura and subobscura subgroups form a monophyletic clade, although they are unable to resolve the relationships among the major lineages within the obscura species group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号