首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to evaluate biochemical changes in the fatty acid (FA) compositions of selected lipid depot (kidney and liver) and absorption (intestine) organs in larvae and metamorphosing sea lamprey, Petromyzon marinus. Palmitic or stearic acids were generally the predominant saturated fatty acids (SFA) before and during metamorphosis, but the greatest proportion of myristic acid occurred in renal triacylglycerol (TG). Monoenes, dienes, and polyenes consist mainly of 16:1, 18:1, and 20:1, 18:2 and 20:2omega6, and 18:4omega3, respectively. Alterations in these predominant fatty acids occurred during lamprey metamorphosis, but depended on tissue, lipid class, and developmental status. During metamorphosis, kidney TG and phospholipid (PL) classes tended to mobilize SFA and enhance the fatty acid unsaturation, as indicated by increased unsaturated/saturated ratio, unsaturation index (USI), and total mean chain length (MCL). There was a tendency to increase saturation in the fatty acids of liver TG and PL classes and intestine TG, FA and monoacylglycerol (MG) classes, but to increase unsaturation in the fatty acids of liver cholesteryl ester (CE), FA and MG classes and intestine PL and CE classes from larva or stage 3 to stage 7. Increased polyunsaturated fatty acids in kidney TG and PL from larvae to stage 5 transformers and intestine PL and CE from stage 3 to stage 7 transformers may reflect an osmoregulatory pre-adaptation. The presence of branched-chain SFA (BCSFA) and the odd number of fatty acids (ONFA) indicated a significant role of detritivores in the benthic larvae. Decreased abundance of BCSFA, ONFA, and 18:2 dienes occurred in the transformed intestine TG as non-trophic metamorphosis proceeded. These data suggest that sea lamprey metamorphosis may proceed in a habitat, dietary, osmoregulatory, energetic, and developmental pre-adaptation of fatty acid composition from benthic filter-feeding larvae to pelagic parasitic juveniles.  相似文献   

2.
During the late postspawning phase, freshwater catfish Clarias batrachus fed a diet rich in linseed oil (18: 3 n-3) (LSO) and 13L : 11D photoperiod and at 28° C showed increases in ovarian weight and plasma levels of testosterone and oestradiol-17β, and in concentrations of free fatty acids (FFA), monoglycerides (MG), diglycerides (DG), triglycerides (TG), phospholipids (PL) and esterified cholesterol (CE) in the liver, plasma and ovary. In fish fed a diet rich in sunflower oil (18: 2 n-6) (SFO) under the same conditions, plasma testosterone decreased sharply, concentrations of FFA, DG and TG increased in the liver and plasma and ovarian levels of TG and CE decreased. Neither diet was gonadostimulatory when fed at 18°C.  相似文献   

3.
Oleosomes (lipid bodies) in nitrogen-fixing peanut nodules   总被引:1,自引:0,他引:1  
Abstract. Nitrogen-fixing peanut root nodules have oleosomes (lipid bodies) in the infected cells. The oleosomes have been characterized and compared with their counterparts in the seed tissue. Eighty per cent of the nodule oleosomes were found to be of smaller size (0.16–1.0 μm diameter [dia.]) while in the seeds the larger size (2.0–5.5 μm dia.) dominated. The larger oleosomes were exclusively found in the uninfected three layers of cortical cells adjacent to the infected zone. Morphometric analyses have revealed significantly higher numbers of oleosomes covering about 8% of the infected cell area in immature (white) nodules, whereas the mature/old (pink) nodules had lesser numbers occupying about 4–5% of the cell area. The decrease in the amount of oleosomes possibly reflects their utilization in mature/old nodules which effectively fix nitrogen. The oleosomes were distinctly stained by p-phenylenediamine (pPD) at both light and electron microscopic levels. An electron-dense rim was observed around the nodule oleosomes; where lipolytic activity was also demonstrated using cytochemical methods. The rim was absent in the seed oleosomes. The defatted oleosomes were found to be surrounded by a 'half unit membrane' and a non-extractable rim of possible pro-teinaceous substance. Gas chromatographic analyses of the lipid from the isolated oleosomes indicated the presence of higher amounts of saturated fatty acids in the nodule oleosomes than the ones in the seed. The study indicates that the nodule oleosomes differ from seed oleosomes, with respect to the presence of (1) an electron-dense rim showing (2) lipolytic activity and (3) higher amounts of saturated fatty acids. Nodule oleosomes seem to be transient storage organelles to be metabolized, while in the seed they are meant for long-term storage.  相似文献   

4.
We have examined the metabolism of three radiolabeled 1,2-diacylglycerols (DGs) in NIH 3T3 fibroblasts. Since the lipids used are not appreciably taken up by the cells, we used a phosphatidylserine (PS)-based liposome fusion system to rapidly associate the lipid species with the plasma membrane. When 1,2-[1-14C]dioleoyl-sn-3-glycerol ([14C]DOG) is delivered in this way, it is rapidly converted predominantly to phosphatidylcholine (PC) and triacylglycerol (TG) and to a lesser extent, to monoacylglycerol (MG) and fatty acids (FA), as well as phosphatidic acid (PA) and phosphatidylinositol (PI). We present evidence that [14C] DOG is largely utilized as an intact molecule rather than being broken down to FA and then incorporated to cell lipids. Examination of the metabolism of 1-stearoyl-2-[1-14C]myristoyl-sn-3-glycerol ([14C]SMG) and 1-stearoyl-2-arachidonoyl-sn-3-glycerol ([14C]SAG) reveal important differences. Both produce substantial labeling of PC but [14C]SMG gives rise to the highest proportion of TG and the lowest of PA and PI, whereas [14C]SAG yields the opposite pattern. When phosphatidic acid labeled on its glycerol backbone (1,2-dioleoyl-sn-[U-14C] glycero-3-phosphate) was supplied to the cells via the liposomes, rapid appearance of labeled DG was found which then decreased with concomitant labeling of cellular PC and TG. Only small amounts of the glycerol backbone were recovered in PI. Our experiments identify three types of processes involved in the metabolism of plasma membrane DGs: (i) transferase-catalyzed conversions to PC and TG, (ii) lipolytic breakdown to MG and FA, and (iii) phosphorylation to PA and then conversion to PI. The relative proportions of each DG species converted to these different products are strongly dependent on the fatty acyl composition of the particular DG molecular species, even though formation of PC is the major event in all cases. Since DGs are important second messengers, our study supports the view that conversion to PC and TG can play a key role in DG signal attenuation.  相似文献   

5.
Following the feeding of a triacylglycerol-rich meal to healthy adult human beings, duodenal contents were aspirated for ex vivo chemical and physical-chemical analyses. The aspirates were collected during established lipid digestion and absorption into a "cocktail" of chemical inhibitors that rapidly inhibited ex vivo lipolysis. Following ultracentrifugation, the lipids separated into a floating oil layer, several interfacial layers, a "clear" or turbid "subphase", and a precipitated "pellet". By chemical and phase analyses, the floating layer was composed of oil-in-water emulsion particles with cores of triacylglycerol (TG), diacylglycerols (DG), and cholesteryl esters (CE) emulsified with a surface coat of partially ionized fatty acids (FA), monoacylglycerols (MG), diacylphosphatidylcholine (PL), and bile salts (BS). The interfacial layers contained similar emulsion particles dispersed among excess emulsifier which adopted a lamellar liquid-crystalline structure. Precipitated pellets were composed principally of emulsifying lipids, with smaller amounts of crystalline calcium soaps and BS. Relative lipid compositions of all but three subphases fell within a two-phase region of the condensed ternary phase diagram (Staggers et al., 1990, companion paper) where saturated mixed micelles composed of BS, FA "acid-soaps", MG, PL, cholesterol (Ch), and traces of DG (and TG) coexisted with unilamellar liquid-crystalline vesicles composed of the same lipids. Attempts to achieve clean separation of vesicles from micelles by repeat ultracentrifugation failed. Compared with the structure and sizes of lipid particles in equilibrated model systems (Staggers et al., 1990), quasielastic light scattering (QLS) analysis revealed that ex vivo micellar sizes (mean hydrodynamic radii, Rh) were similar (less than or equal to 40 A), whereas unilamellar vesicle sizes (Rh = 200-600 A) were appreciably smaller. Two-component QLS analysis of the subphases showed that much larger proportions of lipids were solubilized by micelles than were dispersed as unilamellar vesicles. When followed as functions of time, vesicles frequently dissolved spontaneously into mixed micelles, indicating that, in the nonequilibrium in vivo conditions, the constituent micellar phase was often unsaturated with lipids. These results are consistent with the hypothesis that, during hydrolysis of emulsified DG and TG by luminal lipases, unilamellar vesicles originate in lamellar liquid crystals that form at emulsion-water interfaces in the upper small intestine. In a BS-replete environment, unilamellar vesicles probably represent the primary dispersed product phase of human fat digestion and facilitate the dissolution of lipolytic products into unsaturated mixed micelles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Studies of fatty acid (FA) esterification by adipocytes have led to conflicting views with respect to how the process is regulated by norepinephrine (NE). It remains unclear whether NE directly modulates the pathway or whether its effects are indirect and reflect its well-known action to activate lipolysis. Changes in lipolysis can complicate estimation of esterification rates by altering both medium FA and the hydrolysis of newly formed FA esters. In this report, we describe an experimental approach that determined the effect of NE on FA esterification, amidst the complications introduced by activation of lipolysis. Esterification rates were estimated from the simultaneous incorporations (0.1-60 min) of [14C]glucose and [3H]oleate into diglyceride (DG), phospholipid (PL), and triglyceride (TG). Saturation kinetics of incorporation rates, with respect to FA, and more specifically to unbound or albumin-free FA (ubFA), were determined in both basal and NE-treated cells. To obtain true estimates of ester synthesis, incorporation rates were adjusted for label loss from breakdown of labeled esters. Our findings were: 1) In basal versus NE-treated cells, [3H]oleate, on its pathway to esterification, was diluted, respectively, by 2 and 50% of measured cell FA, and the diluting FA appeared derived from lipolysis. 2) Syntheses of PL, DG, and TG, estimated from incorporation of [14C]glucose, saturated at low ubFA. The Km for TG synthesis (0.06 microM) was within the physiological range of ubFA which meant that changes in plasma FA will modulate TG synthesis. PL synthesis, on the other hand (Km less than 0.01 microM), would be largely saturated under physiological conditions. 3) NE treatment increased the molar ratio of FA to albumin in the medium an average 8-fold and ubFA about 87-fold. In addition, NE accelerated hydrolysis of labeled PL and DG. Adjusting incorporation rates for these changes indicated that NE does not directly regulate glyceride synthesis. The assays described should allow estimation of glycerolipid synthesis under various metabolic or disease states and will distinguish direct effects from those reflecting changes in FA concentration or in hydrolysis of labeled FA esters.  相似文献   

7.
Free fatty acids (FFA) and diacylglycerol (DG) content and composition in the cerebrum of 5-day-old rats were studied after pentylenetetrazol (PTZ)-induced convulsions. A threefold increase in brain FFA was observed 30 min after PTZ injection in experiments carried out in spring. In contrast, a 50% decrease in FFA content was observed during summer. These changes were accounted for by saturated and monoenoic fatty acids, whereas arachidonic and docosahexaenoic acids were not affected during the convulsive episode in either season. The effect of PTZ on brain DG was much smaller than it was on FFA, and less sensitive to seasonal influence. However, DG released in the summer was significantly less enriched in arachidonic acid than in the spring. Levels of FFA and DG in untreated animals were found to be subject to a circannual rhythm. Both the levels of FFA and their degree of unsaturation (unsaturated fatty acids/total FFA) were highest in summer and lowest in winter, whereas the opposite was true for DG. Circannual variations in these metabolites may be the manifestation of a programmed biological calendar regulating enzymes of brain lipid metabolism in homeotherms that under natural conditions must adapt to changing environmental temperatures.  相似文献   

8.
Soybean seedlings were grown at 28°C under dark or light conditions for 12 days. Non-polar lipids (NPL) were separated by silicic acid column chromatography from total lipids in epicotyl containing young leaves, hypocotyl and root. The glyceride (TG, DG, and MG), free fatty acid (FFA) and sterol lipid (SE) components in NPL were analyzed mainly by thin-layer and gas-liquid chromatographies (TLC and GLC).

During germination, the amounts of polar lipids (PL) markedly increased in the tissues of soybean seedlings, especially in light-grown seedlings, whereas these of NPL increased slightly or maintained constant values. The features of the compositions and changing patterns of NPL in the tissues were more clarified in light-grown seedlings than in dark-grown ones. The pattern of change in fatty acid composition was similar in TG and 1,2-DG, which showed higher proportions of linoleic and linolenic acids, whereas FFA, 1,3-DG or MG had high proportions of saturated fatty acids. These results indicate that the compositions and changing patterns of NPL and their fatty acids in the tissues depend on the differences under two germinating conditions tested.  相似文献   

9.
Total lipid extracts of peripheral blood cells from patients with chronic leukaemias were analysed for relative values of saturation of the eighteen carbon chain length fatty acids (C 18 FA). The results are expressed as saturation index (C 18 S:C 18 U) of the saturated C 18 FA (stearic acid) over the unsaturated C 18 FA (oleic, linoleic and linolenic acids). The saturation indices of the white blood cells (WBC) and the red blood cells (RBC) in specimens from 14 patients with chronic granulocytic leukaemia (CGL) and 17 patients with chronic lymphocytic leukaemias (CLL) were significantly and consistently lower than control specimens. It is proposed that the relative increase in the unsaturated oleic acid could prove to be a chemical marker of malignancy reflecting a deficient cellular control of the process of stearic acid desaturation. The theoretical implications of the implied increase in membrane fluidity for the cells are discussed.  相似文献   

10.
Medium chain glycerides (MCGs) containing C8:0 and C10:0 fatty acids is very much important for medicinal and nutritional applications. Coconut and palm kernel fatty acid distillates (FADs) can be utilized to produce MCGs by a combination of lipase-catalyzed hydrolysis and esterification reactions. The neutral glycerides present in coconut and palm kernel FADs are hydrolyzed by Candida rugosa lipase. The hydrolysates were then subjected to steam distillation under vacuum (at 120–140 °C) to get fractions rich in medium chain fatty acids (MCFAs). The fractions, from coconut and palm kernel FADs (75.2 and 76.2% MCFAs, respectively), were esterified with Rhizomucor miehei (Lipozyme RM IM) lipase to produce MCGs. Products from coconut FAD contained 64.7–67.5% diacylglycerol (DG), followed by 18.8–22.9% monoacylglycerol (MG) and 9.8–9.3% triacylglycerol (TG). Similarly, products from palm kernel FAD contained 63.5–66.7% DG, 19.1–23.6% MG and 9.5–10.1% TG.  相似文献   

11.
During energy-demanding periods of the annual cycle such as migration or during cold days in winter, birds store fat comprised mostly of 16- or 18-carbon unsaturated fatty acids. In such situations, birds may feed selectively on foods with specific fatty acids that enable efficient fat deposition. We offered wild-caught yellow-rumped warblers Dendroica coronata paired choices between semi-synthetic diets that differed only in their fatty acid composition. Warblers strongly preferred diets containing long-chain (18:1; carbon atoms:double bonds) unsaturated, unesterified fatty acids to diets containing long-chain saturated, unesterified fatty acids (18:0) and they preferred diets containing mono-unsaturated fats (18:1) to diets containing poly-unsaturated fats (18:2). The preference for diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids was consistent in birds tested one week after capture at 21°C, one month after capture when cold-acclimated (1°C), and six weeks after capture at 21°C. Birds acclimated to a diet with 50% of the fat comprised of unesterified stearic acid (18:0) lost mass and reduced their food intake when we reduced ambient temperature from 21°C to 11°C over three days. We conclude that especially in energy-demanding situations there are limits to the yellow-rumped warblers' ability to assimilate some long-chain saturated fatty acids and that this digestive constraint can explain in part why yellow-rumped warblers prefer diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids.  相似文献   

12.
PtdCho accumulation is a periodic, S phase-specific event that is modulated in part by cell cycle-dependent fluctuations in CTP:phosphocholine cytidylyltransferase (CCT) activity. A supply of fatty acids is essential to generate the diacylglycerol (DG) precursors for phosphatidylcholine (PtdCho) biosynthesis but it is not known whether the DG supply is also coupled to the cell cycle. Although the rate of fatty acid synthesis in a macrophage cell line was dramatically stimulated in response to the growth factor, CSF-1, it was not regulated by the cell cycle. Increased fatty acid synthesis correlated with elevated acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) steady-state mRNA levels. Cellular fatty acid synthesis was essential for membrane PL synthesis. Cerulenin inhibition of endogenous fatty acid synthesis also inhibited PtdCho synthesis, which was not relieved by exogenous fatty acids. Inhibition of CCT activity by the addition of lysophosphatidylcholine (lysoPtdCho) or temperature-shift of a conditionally defective CCT diverted newly synthesized DG to the TG pool where it accumulated. Enforced expression of CCT stimulated PtdCho biosynthesis and reduced TG synthesis. Thus, the cellular DG supply did not regulate PtdCho biosynthesis and CCT activity governs the partitioning of DG into either the PL or TG pools, thereby controlling both PtdCho and TG biosynthesis.  相似文献   

13.
This study analyzes the effects of soil salinity on fatty acid composition, antioxidative enzyme activity, lipid peroxidation, and photosynthesis in functional leaves during the flowering and boll-forming stages of two cotton cultivars, namely, CCRI-44 (salt-tolerant) and Sumian 12 (salt-sensitive), grown under different soil salinity conditions. Saturated (C16:0 and C18:0) and unsaturated fatty acid (FA) contents (C18:1), as well as superoxide dismutase activity increased, whereas high-unsaturated FA (C18:2 and C18:3) decreased, with the increase in soil salinity. The production of malondialdehyde increased with increasing lipoxygenase (LOX) activity, indicating that LOX catalyzed FA peroxidation under salt stress. Soil salinity had no significant effect on catalase (CAT) and peroxidases (POD) activity in the salt-sensitive cultivar Sumian 12, but significantly increased CAT and POD activities in the salt-tolerant cultivar CCRI-44. Net photosynthesis and stomatal conductance of the cotton cultivars decreased in response to salt stress; however, CCRI-44 showed a smaller reduction in photosynthesis than Sumian 12. The results indicated that stomatal apparatus limited leaf photosynthetic capacity in the salinity-treated plants of both cultivars. The net photosynthetic rate, maximum photochemical efficiency, and photochemical quantum yield of the cotton functional leaves showed positive correlation with double-bond index (DBI). These results suggested that salt stress caused DBI reduction and decreased the photochemical conversion efficiency of solar radiation and, thereby resulting in lower net photosynthetic rates.  相似文献   

14.
沙棘根瘤内生菌的多型性   总被引:1,自引:0,他引:1  
用透射电子显微镜观察了春、夏、秋、冬四个季节的沙棘根瘤,以及瘤瓣上、中、下三个部位。结果表明,不同季节,不同部位的瘤瓣内,根瘤内生菌有7种不同形态。即侵染菌丝体、繁殖菌丝体、营养菌丝体、春孢子及春孢子囊、泡囊,冬孢子及冬孢子囊和类菌体。在多年生珊瑚状的根瘤中,它们的世代交替是:春夏季以侵染菌丝、繁殖菌丝、营养菌丝、春孢子囊及春孢子、泡囊为主;秋冬季以衰退的营养菌丝、衰老泡囊、冬孢子囊和冬孢子、类菌体为主。冬孢子和类菌体是休眠体。  相似文献   

15.
Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.  相似文献   

16.
We examined the effect of insulin on the synthesis and degradation of muscle lipid pools [phospholipid (PL), diacylglycerol (DG), triacylglycerol (TG)] and palmitate oxidation in isolated resting and contracting (20 tetani/min) soleus muscles. Lipid metabolism was monitored using the previously defined pulse-chase procedure. At rest, insulin significantly increased total palmitate uptake into soleus muscle (+49%, P < 0.05), corresponding to enhanced DG (+60%, P < 0.05) and TG (+61%, P < 0.05) esterification, but blunted palmitate oxidation (-38%, P < 0.05) and TG hydrolysis (-34%, P < 0.05). During muscle contraction, when total palmitate uptake was increased, insulin further enhanced uptake (+21%, P < 0.05) and esterification of fatty acids (FA) to PL (+73%, P < 0.05), DG (+19%, P < 0.05), and TG (+161%, P < 0.01). Despite a profound shift in the relative partitioning of FA away from esterification and toward oxidation during contraction, the increase in palmitate oxidation and TG hydrolysis was significantly blunted by insulin [oxidation, -24% (P = 0.05); hydrolysis, -83% (P < 0.01)]. The effects of insulin on FA esterification (stimulation) and oxidation (inhibition) during contraction were reduced in the presence of the phosphatidylinositol 3-kinase inhibitor LY-294002. In summary, the effects of insulin and contraction on palmitate uptake and esterification are additive, while insulin opposes the stimulatory effect of contraction on FA oxidation and TG hydrolysis. Insulin's modulatory effects on muscle FA metabolism during contraction are mediated at least in part through phosphatidylinositol 3-kinase.  相似文献   

17.
The semi-nomadic cattle Fulani of northern Nigeria consume a diet rich in saturated fatty acids. Since the quality of an individual's dietary fat can influence the fatty acid composition of their membrane phospholipids (PL), we investigated the effect consumption of relatively large amounts of saturated fat might have on the fatty acid composition and fluidity of the serum PL of the Fulani. We obtained blood serum from 112 Fulani pastoralists (38 males, 74 females) 15-77 years of age and determined the serum fatty acid composition of the total PL fraction of each specimen. Our results indicate that the PL of the Fulani were enriched for saturated fatty acids. The unsaturated/saturated fatty acid ratio was 1.02 for the Fulani PL compared to 1.22-2.08 for seven other reference groups drawn from published reports. In addition, the mean melting point (MMP) of the fatty acyl chains of the serum PL of the Fulani was considerably higher than that of the reference populations (MMP, 30.6 degrees C versus 21.3-26.1 degrees C, respectively). The double bond index (DBI) of the serum PL of the Fulani was much lower than that of the PL of the groups against which comparisons were made (DBI, 0.98 versus 1.24-1.43, respectively). Since serum PL and tissue PL are in dynamic equilibrium, these findings suggest that the tissue PL of the Fulani we studied has considerably less fluid character than those of other populations. Since a variety of membrane functions depend on the fluid property of the acyl chains of their constituent PL, it is conceivable that certain critical membrane-dependent systems, including receptor-ligand interactions, solute transport, enzyme activity and lateral movement of macromolecules, are affected in the Fulani.  相似文献   

18.
The changes induced by dietary n-3 fatty acids (FA) in the lipids and FA of plasma, liver and blood cells, and their reversibility, was studied in mice given a diet containing 9% fish oil (FO) for 2 weeks and then returned to, and kept for another 2 weeks on, the usual standard lab chow diet. In plasma, the concentrations of phospholipids (PL), mostly phosphatidylcholine (PC), triacylglycerols (TG), cholesterol and cholesterol esters (CE) decreased rapidly after starting the FO diet, and remained low from day 3 onwards. This decrease was concomitant with a remarkable reduction in the n-6 FA, especially 18:2n-6, not compensated for by the relative enrichment in n-3 FA induced by FO. In liver, TG and CE decreased and PL slightly increased, all of them showing reduced n-6/n-3 ratios. Sphingomyelin, which lacks polyunsaturated FA other than small amounts of 18:2 and 24:2n-6, showed altered ratios between its very long chain monoenes and saturates. In the washout phase, the most rapid event was an immediate increase in 18:2n-6 and after a few days in 20:4n-6 in plasma and liver, where most of the lipid and FA changes were reversed completely in about 10 days. In the case of blood cells even 2 weeks were insufficient for a reversal to the initial n-6/n-3 ratios. The lipid class responsible for this lack of reversibility was phosphatidylethanolamine, PC having returned to the initial fatty acid composition during the stated period.  相似文献   

19.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

20.
Summary Voluntary uptake of triolein, margarine, and lipid-rich natural food (Tubifex) by fasting dragonfly larvae (Aeshna cyanea) led to heavy accumulations of lipid absorption droplets in the enterocytes within 2 days, while subsequent lipid clearance of the midgut epithelium took several weeks depending on the ingested lipid load. No endocytotic lipid uptake was observed after application of a molecular-dispersed fat dye. The smallest lipid droplets first appeared in the subapical groundplasm of the enterocytes and showed a reversible increase in size on their way towards the base. Lipid droplets were also observed at appropriate intervals after oral administration of oleic acid, after feeding margarine in the cold, and after injection of triolein into the isolated midgut.Comparative biochemical analysis after triolein feeding evidenced release of lipase and hydrolytic liberation of FA from TG in the midgut lumen, as well as time-dependent accumulations of TG in the midgut epithelium and of DG in the hemolymph.Oral injection of [14C] oleic acid was followed by its rapid absorption into the midgut epithelium, where it was utilized for the synthesis of MG and esterification to DG and TG. Discharge of radioactive lipid into the hemolymph occurred in the form of FA and DG, while the rectal fat body showed approximately equal labeling of the FA, DG, and TG fractions.Abbreviations AG acylglycerol - DG diacylglycerol - ER endoplasmic reticulum - FA fatty acid - MG monoacylglycerol - TG triacylglycerol Dedicated to Prof. Dr. Dr. R.Lehmensick, Bonn, in honor of his 85th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号