首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of soil salinity on physiological characteristics of functional leaves of cotton plants
Authors:Lei Zhang  Guowei Zhang  Youhua Wang  Zhiguo Zhou  Yali Meng  Binglin Chen
Institution:1. Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People’s Republic of China
Abstract:This study analyzes the effects of soil salinity on fatty acid composition, antioxidative enzyme activity, lipid peroxidation, and photosynthesis in functional leaves during the flowering and boll-forming stages of two cotton cultivars, namely, CCRI-44 (salt-tolerant) and Sumian 12 (salt-sensitive), grown under different soil salinity conditions. Saturated (C16:0 and C18:0) and unsaturated fatty acid (FA) contents (C18:1), as well as superoxide dismutase activity increased, whereas high-unsaturated FA (C18:2 and C18:3) decreased, with the increase in soil salinity. The production of malondialdehyde increased with increasing lipoxygenase (LOX) activity, indicating that LOX catalyzed FA peroxidation under salt stress. Soil salinity had no significant effect on catalase (CAT) and peroxidases (POD) activity in the salt-sensitive cultivar Sumian 12, but significantly increased CAT and POD activities in the salt-tolerant cultivar CCRI-44. Net photosynthesis and stomatal conductance of the cotton cultivars decreased in response to salt stress; however, CCRI-44 showed a smaller reduction in photosynthesis than Sumian 12. The results indicated that stomatal apparatus limited leaf photosynthetic capacity in the salinity-treated plants of both cultivars. The net photosynthetic rate, maximum photochemical efficiency, and photochemical quantum yield of the cotton functional leaves showed positive correlation with double-bond index (DBI). These results suggested that salt stress caused DBI reduction and decreased the photochemical conversion efficiency of solar radiation and, thereby resulting in lower net photosynthetic rates.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号