首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insulin increases FA uptake and esterification but reduces lipid utilization in isolated contracting muscle
Authors:Dyck D J  Steinberg G  Bonen A
Institution:Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1. ddyck@uoguelph.ca
Abstract:We examined the effect of insulin on the synthesis and degradation of muscle lipid pools phospholipid (PL), diacylglycerol (DG), triacylglycerol (TG)] and palmitate oxidation in isolated resting and contracting (20 tetani/min) soleus muscles. Lipid metabolism was monitored using the previously defined pulse-chase procedure. At rest, insulin significantly increased total palmitate uptake into soleus muscle (+49%, P < 0.05), corresponding to enhanced DG (+60%, P < 0.05) and TG (+61%, P < 0.05) esterification, but blunted palmitate oxidation (-38%, P < 0.05) and TG hydrolysis (-34%, P < 0.05). During muscle contraction, when total palmitate uptake was increased, insulin further enhanced uptake (+21%, P < 0.05) and esterification of fatty acids (FA) to PL (+73%, P < 0.05), DG (+19%, P < 0.05), and TG (+161%, P < 0.01). Despite a profound shift in the relative partitioning of FA away from esterification and toward oxidation during contraction, the increase in palmitate oxidation and TG hydrolysis was significantly blunted by insulin oxidation, -24% (P = 0.05); hydrolysis, -83% (P < 0.01)]. The effects of insulin on FA esterification (stimulation) and oxidation (inhibition) during contraction were reduced in the presence of the phosphatidylinositol 3-kinase inhibitor LY-294002. In summary, the effects of insulin and contraction on palmitate uptake and esterification are additive, while insulin opposes the stimulatory effect of contraction on FA oxidation and TG hydrolysis. Insulin's modulatory effects on muscle FA metabolism during contraction are mediated at least in part through phosphatidylinositol 3-kinase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号