首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bioinsecticide Bacillus thuringiensis var. israelensis (Bti) is increasingly used worldwide for mosquito control. Although no established resistance to Bti has been described in the field so far, a resistant Aedes aegypti strain (LiTOX strain) was selected in the laboratory using field‐collected leaf litter containing Bti toxins. This selected strain exhibits a moderate resistance level to Bti, but a high resistance level to individual Cry toxins. As Bti contains four different toxins, generalist resistance mechanisms affecting mosquito tolerance to different toxins were expected in the resistant strain. In the present work, we show that the resistant strain exhibits an increase of various gut proteolytic activities including trypsins, leucine‐aminopeptidases, and carboxypeptidase A activities. These elevated proteolytic activities resulted in a faster activation of Cry4Aa protoxins while Cry4Ba or Cry11Aa were not affected. These results suggest that changes in proteolytic activities may contribute to Bti resistance in mosquitoes together with other mechanisms.  相似文献   

2.
3.
4.
A susceptible strain of Aedes albopictus derived from the Gainesville strain (Florida, USA) was established in our laboratory. The larvicidal efficacies of the neurotoxic insecticides temephos, permethrin and the pure cis and trans-permethrin isomers and the microbial insecticide Bacillus thuringiensis israelensis (Bti) against Ae. albopictus were estimated and compared to a susceptible strain of Aedes aegypti. The larvicidal effect of insect growth regulator pyriproxyfen was also evaluated in both mosquito strains. The median lethal concentration/median emergency inhibition values for Ae. aegypti and Ae. albopictus, respectively, were: temephos, 3.058 and 6.632 ppb, permethrin, 3.143 and 4.933 ppb, cis-permethrin, 4.457 and 10.068 ppb, trans-permethrin, 1.510 and 3.883 ppb, Bti, 0.655 and 0.880 ppb and pyriproxyfen, 0.00774 and 0.01642 ppb. Ae. albopictus was more tolerant than Ae. aegypti to all six larvicides evaluated. The order of susceptibility for Ae. aegypti was pyriproxyfen > Bti > trans-permethrin > temephos > permethrin > cis-permethrin and for Ae. albopictus was pyriproxyfen > Bti > trans-permethrin > permethrin > temephos > cis-permethrin. Because both species can be found together in common urban, suburban and rural breeding sites, the results of this work provide baseline data on the susceptibility of Ae. albopictus to insecticides commonly used for controlling Ae. aegypti in the field.  相似文献   

5.
Mosquito control with biological insecticides, such as Bacillus sp. toxins, has been used widely in many countries. However, rapid sedimentation away from the mosquito larvae feeding zone causes a low residual effect. In order to overcome this problem, it has been proposed to clone the Bacillus toxin genes in aquatic bacteria which are able to live in the upper part of the water column. Two strains of Asticcacaulis excentricus were chosen to introduce the B. sphaericus binary toxin gene and B. thuringiensis subsp. medellin cry11Bb gene cloned in suitable vectors. In feeding experiments with these aquatic bacteria, it was shown that Culex quinquefasciatus, Aedes aegypti, and Anopheles albimanus larvae were able to survive on a diet based on this wild bacterium. A. excentricus recombinant strains were able to express both genes, but the recombinant strain expressing the B. sphaericus binary toxin was toxic to mosquito larvae. Crude protease A. excentricus extracts did not degrade the Cry11Bb toxin. The flotability studies indicated that the recombinant A. excentricus strains remained in the upper part of the water column longer than the wild type Bacillus strains.  相似文献   

6.
7.
Bacillus thuringiensis var. israelensis (Bti) is highly pathogenic to mosquito larvae and is widely used for mosquito control. Its mosquitocidal activity however is relatively low compared to many chemical insecticides. The detoxification mechanisms in the mosquito, among other things, might neutralize the Bti activity, resulting in resistance or tolerance. We tested whether or not the detoxification mechanisms against chemical insecticides might also operate against Bti, rendering it less effective. We targeted four enzymes in Aedes aegypti larvae involved in detoxification with inhibitors that have been used in resistance studies in chemical insecticides and assayed their effects on Bti toxicity. Results revealed that phenylmethanesulphonyl fluoride (PMSF), diethyl maleate, phenobarbital (PB), and piperonyl butoxide (PBO) altered Bti toxicity to various degrees. PMSF is a serine protease inhibitor that prevents Bti digestion and improves Bti activity. PB that induces several detoxifying enzymes had two different effects depending on the method of treatment. Mortality was higher when treatment with PB was discontinuous (149%) whereas with continuous treatment it was lower (101%). PBO, a typical cytochrome P450 inhibitor, increased Bti effect (159%). The combination of discontinuous pretreatment of larvae with PB followed by PBO had a synergistic effect and showed increased activity (146%). It appears that the mechanism for Bti resistance in mosquitoes is similar to that of chemical insecticides. Our studies indicate that we may be able to increase Bti activity by inhibiting some of the detoxification systems as active as broad spectrum chemical insecticides.  相似文献   

8.
Current methods of broad area application of contact insecticides used in mosquito control are becoming less effective, primarily due to resistance within mosquito populations. New methods that can deliver ingestible insecticides are being investigated as a means to mitigate resistance. This study evaluated insecticide delivery through toxic sugar baits (TSB) and resulting mortality of susceptible and resistant strains of Aedes aegypti. Two Ae. aegypti strains were evaluated using a 1% boric acid TSB: the susceptible Orlando 1952 (ORL) strain and the resistant Puerto Rican (PR) strain. The TSB resulted in high mortality for both ORL and PR strain of Ae. aegypti. Average mortality of female mosquitoes given TSB was 90.8% for PR and 99.3% for ORL. Our study suggests that targeting resistant mosquitoes with ingestible insecticides through TSBs could be a viable alternative to current mosquito control strategies and should be considered when developing an integrated vector management program.  相似文献   

9.
Since the first bacteria with insecticidal activity against mosquito larvae were reported in the 1960s, many have been described, with the most potent being isolates of Bacillus thuringiensis or Lysinibacillus sphaericus (formerly and best known as Bacillus sphaericus). Given environmental concerns over the use of broad spectrum synthetic chemical insecticides and the evolution of resistance to these, industry placed emphasis on the development of bacteria as alternative control agents. To date, numerous commercial formulations of B. thuringiensis subsp. israelensis (Bti) are available in many countries for control of nuisance and vector mosquitoes. Within the past few years, commercial formulations of L. sphaericus (Ls) have become available. Because Bti has been in use for more than 30 years, its properties are well know, more so than those of Ls. Thus, the purpose of this review is to summarise the most critical aspects of Ls and the various proteins that account for its insecticidal properties, especially the mosquitocidal activity of the most common isolates studied. Data are reviewed for the binary toxin, which accounts for the activity of sporulated cells, as well as for other toxins produced during vegetative growth, including sphaericolysin (active against cockroaches and caterpillars) and the different mosquitocidal Mtx and Cry toxins. Future studies of these could well lead to novel potent and environmentally compatible insecticidal products for controlling a range of insect pests and vectors of disease.  相似文献   

10.
Two serine proteinase genes were isolated from Culex pipiens pallens as significantly up-regulated genes in a deltamethrin-resistant strain through a combination of suppression substractive hybridization and gene expression profiling by macroarrays. These two genes were found to be expressed at least threefold higher in the resistant strain than in the susceptible one. By using rapid amplification of cDNA ends to screen the constructed cDNA library, we cloned these two sequences. There were 909 bp with an open reading frame of 786 bp in the sequence of trypsin cDNA (GenBank/NCBI AF468495), the deduced protein had 261 amino acids, which was most similar to the trypsin gene of Anopheles gambiae. There were 992 bp with an open reading frame of 816 bp in the chymotrypsin cDNA (GenBank/NCBI AY034060), and its deduced amino acid sequence had 271 amino acids, which was most similar to the chymotrypsin-like protein from Aedes aegypti. The two genes were stably expressed in mosquito C6/36 cells, and the expected 29 and 30 kDa bands were shown with Western blot, respectively. In these cells, after deltamethrin treatment, they had protective effects on the viability. The results indicate that trypsin and chymotrypsin were more highly expressed in the deltamethrin-resistant strain, and was related to insecticide resistance in mosquitoes, Cx. pipiens pallens.  相似文献   

11.
The mosquito is a very important vector involved in the worldwide transmission of disease-causing viruses and parasites. Controlling the mosquito population remains one of the best means for preventing the serious infectious diseases of malaria, yellow fever, dengue, filariasis and so on and there has been an increasing interest in developing biopesticides as a useful substitute to chemical insecticides. As a result, Bacillus thuringiensis subsp. israelensis (Bti) has been extensively used due to its specificity and high toxicity to a variety of mosquito larvae. However it is prudent to seek alternatives to Bti with alternative spectra of mosquitocidal activity or that are able to overcome any resistance that might develop against Bti. The Bt S2160-1 strain was isolated from soil samples collected from Southern China and found to have a comparable mosquitocidal activity to Bti. However there were significant differences in terms of their plasmid profiles, crystal proteins produced and cry gene complement. A PCR-restriction fragment length polymorphism identification system was developed and used in order to identify novel cry-type genes and four such genes (cry30Ea, cry30Ga, cry50Ba and cry54Ba) were identified in Bt S2160-1. In conclusion, Bt S2160-1 has been identified as a potential alternative to Bti, which could be used for the control of mosquito populations in order to reduce the incidence of mosquito-borne diseases.  相似文献   

12.
Glutathione transferases (GSTs) play a central role in the detoxification of xenobiotics such as insecticides and elevated GST expression is an important mechanism of insecticide resistance. In the mosquito, Anopheles gambiae, increased expression of an Epsilon class GST, GSTE2, confers resistance to DDT. We have identified eight GST genes in the dengue vector, Aedes aegypti. Four of these belong to the insect specific GST classes Delta and Epsilon and three are from the more ubiquitously distributed Theta and Sigma classes. The expression levels of the two Epsilon genes, a Theta GST and a previously identified Ae. aegypti GST [Grant and Hammock, 1992. Molecular and General Genetics 234, 169-176] were established for an insecticide susceptible and a resistant strain. We show that the putative ortholog of GSTe2 in Ae. aegypti (AaGSTe2) is over expressed in mosquitoes that are resistant to the insecticides DDT and permethrin. Characterisation of recombinant AaGSTE2-2 confirmed the role of this enzyme in DDT metabolism. In addition, unlike its Anopheles ortholog, AaGSTE2-2 also exhibited glutathione peroxidase activity.  相似文献   

13.
14.
Genomic analysis of detoxification genes in the mosquito Aedes aegypti   总被引:5,自引:0,他引:5  
Annotation of the recently determined genome sequence of the major dengue vector, Aedes aegypti, reveals an abundance of detoxification genes. Here, we report the presence of 235 members of the cytochrome P450, glutathione transferase and carboxy/cholinesterase families in Ae. aegypti. This gene count represents an increase of 58% and 36% compared with the fruitfly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. The expansion is not uniform within the gene families. Secure orthologs can be found across the insect species for enzymes that have presumed or proven biosynthetic or housekeeping roles. In contrast, subsets of these gene families that are associated with general xenobiotic detoxification, in particular the CYP6, CYP9 and alpha esterase families, have expanded in Ae. aegypti. In order to identify detoxification genes associated with resistance to insecticides we constructed an array containing unique oligonucleotide probes for these genes and compared their expression level in insecticide resistant and susceptible strains. Several candidate genes were identified with the majority belonging to two gene families, the CYP9 P450s and the Epsilon GSTs. This 'Ae. aegypti Detox Chip' will facilitate the implementation of insecticide resistance management strategies for arboviral control programmes.  相似文献   

15.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

16.
17.
球形芽孢杆菌杀蚊毒素蛋白及其 遗传操作研究进展   总被引:3,自引:0,他引:3  
袁志明  张用梅 《昆虫学报》1999,42(2):212-223
蚊虫是多种人类传染疾病的主要传播媒介,如疟疾、丝虫病、乙型脑炎、黄热病和登革热等,对人类的健康造成了极大的危害[1]。控制蚊虫被认为是消除这些蚊媒疾病的有效途径。在过去的45年里,尽管化学杀虫剂和各种抗病药物的使用对降低疟疾和蚊媒疾病的发病率和死亡率...  相似文献   

18.
Classical biological control is the most successfuland promising way to replace chemical pesticides. Thesubspecies israelensis of Bacillusthuringiensis (Bti) is a safe and efficient agent tocontrol mosquito larvae and hence mosquito-bornediseases. One approach to overcome the low efficacyand short half-life in nature of current formulationsof Bti is by expressing the toxin genes in recombinantcyanobacteria as a delivery system. Attempts toexpress Bti toxin in cyanoabcteria have been carriedout during the last ten years. Toxicities of thetransgenic strains were however very low, even underregulation of strong promoters, too low to beeffective in vivo. Two Bti Cry proteins haverecently been co-expressed in the filamentousnitrogen-fixing cyanobacterium Anabaena PCC7120, resulting in clones with the highest toxicitiesand stabilities ever reached so far. However, toobtain a long-lasting preparation, it would be usefulto express Bti toxin genes in cyanobacterial strainsisolated from nature. This approach requiresdevelopment of a system for effective transformationinto such strains. Releasing such recombinant strainsto open environments is still a major obstacle inexploiting this biotechnology.  相似文献   

19.
20.
Increasing insecticide resistance requires strategies to prolong the use of highly effective vector control compounds. The use of combinations of insecticides with other insecticides and phytochemicals is one such strategy that is suitable for mosquito control. In bioassays with Aedes aegypti and Culex annulirostris mosquitoes, binary mixtures of phytochemicals with or without synthetic insecticides produced promising results when each was applied at a LC25 dose. All mixtures resulted in 100% mortality against Cx. annulirostris larvae within 24 h rather than the expected mortality of 50%. All mixtures acted synergistically against Ae. aegypti larvae within the first 24 h except for one mixture that showed an additive effect. We conclude that mixtures are more effective than insecticides or phytochemicals alone and that they enable a reduced dose to be applied for vector control potentially leading to improved resistance management and reduced costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号