首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoprotective response in the dinoflagellate Glenodinium foliaceum F. Stein exposed to ultraviolet‐A (UVA) radiation (320–400 nm; 1.7 W · m2) and the effect of nitrate and phosphate availability on that response have been studied. Parameters measured over a 14 d growth period in control (PAR) and experimental (PAR + UVA) cultures included cellular mycosporine‐like amino acids (MAAs), chls, carotenoids, and culture growth rates. Although there were no significant effects of UVA on growth rate, there was significant induction of MAA compounds (28 ± 2 pg · cell?1) and a reduction in chl a (9.6 ± 0.1 pg · cell?1) and fucoxanthin (4.4 ± 0.1 pg · cell?1) compared to the control cultures (3 ± 1 pg · cell?1, 13.3 ± 3.2 pg · cell?1, and 7.4 ± 0.3 pg · cell?1, respectively). In a second investigation, MAA concentrations in UVA‐exposed cultures were lower when nitrate was limited (P < 0.05) but were higher when phosphate was limiting. Nitrate limitation led to significant decreases (P < 0.05) in cellular concentration of chls (chl c1, chl c2, and chl a), but other pigments were not affected. Phosphate availability had no effect on final pigment concentrations. Results suggest that nutrient availability significantly affects cellular accumulation of photoprotective compounds in G. foliaceum exposed to UVA.  相似文献   

2.
The induction and protective role of the UV-absorbing compounds known as mycosporine-like amino acids (MAAs) were examined in sublittoral Chondrus crispus Stackh. transplanted for 2 weeks in the spring and summer to shallow water under three irradiance conditions: PAR (photosynthetically active radiation; 400–700 nm), PAR + UVA (PAR + 320– 400 nm), PAR + UVA + UVB (PAR + UVA + 280– 320 nm). Sublittoral thalli collected around Helgoland, North Sea, Germany, from 6 m below the mean low water of spring tides contained less than 0.1 mg·g−1 dry weight (DW) total MAAs, whereas eulittoral samples contained over 1 mg·g−1 DW. Transplantation to shallow water led to the immediate synthesis of three MAAs in the following temporal order: shinorine (λmax 334 nm), asterina (λmax 330 nm), and palythine (λmax 320 nm), with the shinorine content peaking and then declining after 2 days (exposure to 100 mol photons·m−2). Maximum total MAA content (2 mg·g−1 DW) also occurred after 2 days of induction, exceeding the content normally found in eulittoral samples. Furthermore, the relative proportion of the different MAAs at this time was different than that in eulittoral samples. After 2 days the total content declined to the eulittoral value, with palythine as the principal MAA. Similar data were obtained for all treatments, indicating that MAA synthesis in C. crispus was induced by PAR and not especially stimulated by UV radiation. The ability of photosystem II (PSII) to resist damage by UVB was tested periodically during the acclimation period by exposing samples to a defined UVB dose in the lab. Changes in chlorophyll fluorescence (Fv/Fm and effective quantum yield, φII) indicated that PSII function was inhibited during the initial stage of acclimation but gradually improved with time. No difference among screening treatments was detected except in spring for the samples acclimating to PAR + UVA + UVB. In this treatment Fv/Fm and φII were significantly lower than in the other treatments. During the first week of each experiment, growth rates were also significantly reduced by UVB. The reductions occurred despite maximum MAA content, indicating an incomplete protection of photosynthetic and growth-related processes.  相似文献   

3.
In spring 2005, monthly sampling was carried out at a sublittoral site near Tautra Island. Microphytobenthic identification, abundance (ABU), and biomass (BIOM), were performed by microscopic analyses. Bacillariophyceae accounted for 67% of the total ABU, and phytoflagellates constituted 30%. The diatom floristic list consisted of 38 genera and 94 species. Intact light‐harvesting pigments chl a, chl c, and fucoxanthin and their derivatives were identified and quantified by HPLC. Photoprotective carotenoids were also observed (only as diadinoxanthin; no diatoxanthin was detected). Average fucoxanthin content was 4.57 ± 0.45 μg fucoxanthin · g sediment dry mass?1, while the mean chl a concentration was 2.48 ± 0.15 μg · g?1 dry mass. Both the high fucoxanthin:chl a ratio (considering nondegraded forms) and low amounts of photoprotective carotenoids indicated that the benthic microalgal community was adapted to low light. Microphytobenthic primary production was estimated in situ (MPPs, from 0.15 to 1.28 mg C · m?2 · h?1) and in the laboratory (MPPp, from 6.79 to 34.70 mg C · m?2 · h?1 under light saturation) as 14C assimilation; in April it was additionally estimated from O2‐microelectrode studies (MPPO2) along with the community respiration. MPPO2 and the community respiration equaled 22.9 ± 7.0 and 7.4 ± 1.8 mg C · m?2 · h?1, respectively. A doubling of BIOM from April to June in parallel with a decreasing photosynthetic activity per unit chl a led us to suggest that the microphytobenthic community was sustained by heterotrophic metabolism during this period.  相似文献   

4.
Karsten U  Lembcke S  Schumann R 《Planta》2007,225(4):991-1000
The effects of artificial ultraviolet radiation [UVR; 8 W m−2 ultraviolet-A (UVA), 0.4 W m−2 ultraviolet-B (UVB)] on photosynthetic performance, growth and the capability to synthesise mycosporine-like amino acids (MAAs) was investigated in the aeroterrestrial green algae Stichococcus sp. and Chlorella luteoviridis forming biofilms on building facades, and compared with the responses of two green algae, from soil (Myrmecia incisa) and brackish water (Desmodesmus subspicatus). All species exhibited decreasing quantum efficiency (F v/F m) after 1–3 days exposure to UVR. After 8–12 days treatment, however, all aeroterrestrial isolates exhibited full recovery under UVA and UVA/B. In contrast, D. subspicatus showed only 80% recovery after treatment with UVB. While Stichococcus sp. and C. luteoviridis exhibited a broad tolerance in growth under all radiation conditions tested, M. incisa showed a significant decrease in growth rate after exposure to UVA and UVA/B. Similarly D. subspicatus grew with a reduced rate under UVA, but UVA/B led to full inhibition. Using HPLC, an UV-absorbing MAA (324 nm-MAA) was identified in Stichococcus sp. and C. luteoviridis. While M. incisa contained a specific 322 nm-MAA, D. subspicatus lacked any trace of such compounds. UV-exposure experiments indicated that all MAA-containing species are capable of synthesizing and accumulating these compounds, thus supporting their function as an UV-sunscreen. All data well explain the conspicuous ecological success of aeroterrestrial green algae in biofilms on facades. Biosynthesis and accumulation of MAAs under UVR seem to result in a reduced UV-sensitivity of growth and photosynthesis, which consequently may enhance survival in the environmentally harsh habitat.  相似文献   

5.
Abstract

The aim of this study was to quantify algal colonisation on anthropogenic surfaces (viz. building facades and roof tiles) using chlorophyll a (chl a) as a specific biomarker. Chl a was estimated as the initial fluorescence F0 of ‘dark adapted’ algae using a pulse-modulated fluorometer (PAM-2000). Four isolates of aeroterrestrial green algae and one aquatic isolate were included in this study. The chl a concentration and F0 showed an exponential relationship in the tested range between 0 and 400 mg chl a m?2. The relationship was linear at chl a concentrations <20 mg m?2. Exponential and linear models are presented for the single isolates with large coefficients of determination (exponential: r2 > 0.94, linear: r2 > 0.92). The specific power of this fluorometric method is the detection of initial algal colonisation on surfaces in thin or young biofilms down to 3.5 mg chl a m?2, which corresponds to an abundances of the investigated isolates between 0.2 and 1.5 million cells cm?2.  相似文献   

6.
The psychrophilic diatom Fragilariopsis cylindrus (Grunow) Krieger in Helmcke & Krieger was used to investigate photosynthesis and growth under freezing temperatures. Gene expression during a temperature shift from +5° C to ?1.8° C was studied under 3 and 35 μmol photons·m?2·s?1 by using a macroarray. These measurements were paralleled by determination of fluorescence induction at PSII and pigment analysis. The shift to ?1.8° C at 35 μmol photons·m?2·s?1 caused a marginal decrease of photosynthetic quantum yield (Fv/Fm) from 0.61 to 0.52 with fast recovery after 1 day. The ratio of chl c to chl a increased from 3.1 to 5.5, and the ratio of diatoxanthin to diadinoxanthin increased from 0.7 to 5.0. Genes encoding proteins of PSII (psbA, psbC) and for carbon fixation (rbcL) were down‐regulated, whereas genes encoding chaperons (hsp70) and genes for plastid protein synthesis and turnover (elongation factor EfTs, ribosomal protein rpS4, ftsH protease) were up‐regulated. In contrast, cold exposure at 3 μmol photons·m?2·s?1 induced a marginal increase in Fv/Fm from 0.61 to 0.63 and a strong increase in fucoxanthin concentrations from 0.04 up to 0.12 pg·cell?1. This was paralleled by up‐regulation of fcp genes. The ratio of chl c to chl a also increased from 3.1 to 4.2, as did the ratio of diatoxanthin to diadinoxanthin from 0.7 to 2.2. Down‐regulation of psbA, psbC, and rbcL could also be measured but not up‐regulation of hsp70, EfTs, rpS4, and the ftsH protease. The latter genes are probably necessary to avoid cold shock photoinhibition only at higher light intensities.  相似文献   

7.
Calcifying and a noncalcifying strains of Emiliania huxleyi were cultured in nutrient replete turbidostats under a photon flux density (PFD) gradient from 50 to 600 μmol E·m?2·s?1. For both strains, growth was PFD‐saturated at 300 μmol E·m?2·s?1. The strains, although with clearly different physiological properties due to the presence or absence of calcification, showed the same trends and magnitude of change in their pigment compliment as a function of PFD. Light‐controlled pigment composition and the trends of change in pigment composition were identical in both strains. Fucoxanthin (Fuco) was the major carotenoid in the calcifying strain, while in the noncalcifying strain this role was assumed by 19′ hexanoyloxyfucoxanthin (19 Hex). The photoprotective pigments and 19 Hex, normalized to chl a, increased with increasing light, while chl a content per cell and chl c's and Fuco, normalized to chl a, decreased with increasing PFD. The sum of all carotenoids normalized to chl a was remarkably similar in all PFDs used. Collectively, our results suggest that 19 Hex was synthesized from Fuco with light as a modulating factor and that the total amount of carotenoids is strain‐specific and synthesized/catabolized in tandem with chl a to a genetically predefined level independent of PFD.  相似文献   

8.
Mycosporine‐like amino acids (MAAs) are regarded as powerful sunscreens protecting the algae against harmful UV radiation. The MAA protection efficiency was tested in algal samples by measuring the optimum quantum yield of photosynthesis using photosystem II fluorescence. It could be demonstrated that the recovery of photosynthesis after exposure to enhanced UV radiation is faster in individuals with high MAA content. MAAs can be synthesized in several polar macroalgae in response to different radiation conditions. Although MAA induction patterns are very species‐specific, some similarities can be found. Field studies indicate that plants from different growth habitats providing distinct radiation climate can be grouped into three physiological categories depending on their MAA content. The first group (I) includes mainly deep‐water species, typically lacking MAAs. The second group (II), algal species found in a broad range of water depths (eu‐ and sublittoral), which are able to flexibly synthesize and accumulate MAAs. The third group (III) includes supra‐ and eulittoral taxa, which always contain high MAA concentrations. In laboratory studies, we showed that taxa of group II and III responded in three different ways based on MAA accumulation when exposed to different radiation conditions (PAR, PAR + UVA, PAR + UVA + UVB). Either they: (a) exhibit highest total MAA concentration under the full artificial spectrum; (b) increase their MAA concentration after exposure to PAR and PAR + UVA or (c) MAA concentration declines after exposure to the full spectrum. Our studies have indicated that when coupled with UVR, exposure to temperature fluctuations ranging from 0 to 10 °C also affect MAA biosynthesis.  相似文献   

9.
Lipid content and lipid class composition were determined in stream periphyton and the filamentous green algae Cladophora sp. and Spirogyra sp, Sterols and phospholipids were compared to chlorophyll a (chl a) as predictors of biomass for stream periphyton and algae. Chlorophyll a, phospholipids, and sterols were each highly correlated with ash-free dry mass (AFDM) (r2 > 0.98). Stream periphyton exposed naturally to high light (HL) and low light (LL) had chl a concentrations (μg chl a-mg?1AFDM) of 7.9± 0.7 and 12.4 ± 2.9, respectively, while the sterol concentrations of these HL and LL stream periphyton (1.6 ± 0.4) were not significantly different (P > 0.05). Periphyton exposed to an irradiance of 300 μmol photons·m?2s?1 in the laboratory for 60 h had 5.6 ± 0.55 μg chl a·mg?1 AFDM, but the same periphyton exposed to 2% incident light for the same amount of time had 11.0 ± 0.56 μg chl mg?1 AFDM. Sterol concentrations in these periphyton communities remained unchanged (1.5 ± 0.3 μg·mg?1AFDM), Similar results (i.e. changes in chl a but stability of sterol concentrations in response to irradiance changes) were also found for Cladophora and Spirogyra in laboratory experiments. Sterols can be quantified rapidly from a few milligrams of algae and appear to be a useful predictor of eukaryote biomass, whereas cellular levels of chl a vary substantially with light conditions. Phospholipids (or phospholipid fatty acids) are considered to be a reliable measure of viable microbial biomass. Nevertheless, phospholipid content varied substantially and unpredictably among algae and periphyton under different light regimes. Irradiance also had a significant effect on storage lipids: HL Cladophora and HL periphyton had 2 × and 5 × greater concentrations of triacylglycerols, respectively, compared to their LL forms. HL and LL algae also differed in the concentration of several major fatty acids. These light-induced changes in algal lipids and fatty acids have important implications for grazers.  相似文献   

10.
Long‐term growth response to natural solar radiation with enhanced ultraviolet‐B (UVB) exposure was examined in two species of dinoflagellates [Alexandrium tamarense (M. Lebour) Balech, At, and Heterocapsa triquetra (Ehrenb.) F. Stein, Ht], including two strains of A. tamarense, one from Spain and another from UK, and one diatom species (Thalassiosira pseudonana Hasle et Heimdal). We examined whether variable photoprotection (mycosporine‐like amino acids [MAAs] and xanthophyll‐cycle pigments) affected photosynthetic performance, phytoplankton light absorption, and growth. Growth rate was significantly reduced under enhanced UVB for the UK strain of At and for Ht (both grew very little) as well as for the diatom (that maintained high growth rates), but there was no effect for the Spanish strain of At. MAA concentration was high in the dinoflagellates, but undetectable in the diatom, which instead used the xanthophyll cycle for photoprotection. The highest cell concentrations of MAAs and photoprotective pigments were observed in the UK strain of At, along with lowest growth rates and Fv/Fm, indicating high stress levels. In contrast, the Spanish strain showed progressive acclimation to the experimental conditions, with no significant difference in growth between treatments. Increase in total MAAs followed linearly the cumulative UVB of the preceding day, and both total and primary MAAs were maintained at higher constitutive levels in this strain. Acclimation to enhanced UVB in the diatom resulted in an increase in PSII activity and reduction in nonphotochemical quenching, indicating an increased resistance to photoinhibition after a few weeks. All four species showed increased phytoplankton light absorption under enhanced UVB. Large intrastrain differences suggest a need to consider more closely intraspecific variability in UV studies.  相似文献   

11.
Phytoplankton pigment distributions during the spring isothermal periods of 1998 and 1999 and their association with episodic sediment resuspension were characterized in coastal waters of southern Lake Michigan. Total and phylogenetic group chl a concentrations (derived using chemical taxonomy matrix factorization of diagnostic carotenoids) corresponded with assemblage and group biovolumes estimated from microscopic enumeration (P≤ 0.001). Diatoms and cryptophytes dominated assemblages and together typically comprised greater than 85% of relative chl a. Total chl a concentrations and both fucoxanthin·chl a ? 1 and alloxanthin·chl a ? 1 ratios were similar across depths (P> 0.05), indicating uniform distributions of and photophysiological states for assemblages and diatoms and cryptophytes, respectively, throughout the mixed water column. Total chl a concentrations were not always spatially uniform from near‐shore to offshore waters, with the greatest variability reflecting the influence of tributary inflows upon coastal assemblages. Sediment resuspension strongly influenced water column particle density and light climate; however, total and group chl a concentrations did not correspond with coefficients of Kd and suspended particulate matter concentrations (P> 0.05). The correspondence of both light attenuation and suspended particulate matter concentration with relative diatom chl a (P≤ 0.001) indicated an apparent association between sediment resuspension and diatoms. This, and the negative association (P≤ 0.0001) between relative diatom and cryptophyte chl a, corresponded with the spatial dominance of diatom and cryptophyte chl a in near‐shore and offshore waters, respectively. The presence of viable chl a and fucoxanthin within the surficial sediment layer, established this layer as a potential source of meroplanktonic diatoms for near‐shore assemblages.  相似文献   

12.
The composition of algal species and pigments and the structural and functional characteristics of the algal community were investigated in an acid stream of southwestern Spain, the Río Tinto. The algal community had low diversity and showed few seasonal differences. It was mainly made up of Klebsormidium flaccidum Kütz. (Silva, Mattox & Blackwell) that produced long greenish or purplish filaments, Pinnularia acoricola Hust. (producing brown patches) and Euglena mutabilis Schmitz. The algal filaments made up a consistent biofilm that also included fungal hyphae, iron bacterial sheaths, diatoms, and mineral particles. HPLC analyses on Río Tinto samples showed that undegraded chl accounted for 67% of the total chl in the filamentous patches but were a minority in the brown patch (2.6%). The brown patch had a concentration of carotenoids eight times lower than that observed in the green patch. When chl concentrations were weighted for the proportion of the different patches on the streambed, undegraded chl a accounted for 89.2 mg chl a·m ? 2 of stream surface area (5.4 g C·m ? 2). This high algal biomass was supported by relatively high nutrient concentrations and by a high phosphatase activity (Vmax = 137.7 nmol methylumbelliferyl substrate·cm ? 2·h ? 1 1 Received 15 July 2002. Accepted 17 February 2003. , Km = 0.0045 μM). The remarkable algal biomass in Río Tinto potentially contributed to the bacterial–fungal community and to the macroinvertebrate community and emphasizes the role that the algae may have in the organic matter cycling and energy flow in extreme systems dominated by heterotrophic microorganisms.  相似文献   

13.
The acclimation of the photosynthetic apparatus of Palmaria palmata (L.) to light intensity was examined in the field and under laboratory conditions. Algae from 3 different shore levels and from laboratory cultures adapted to 6 different photon flux densities were compared. This was done on the basis of light doses, which were delivered by different light regimes in the field and in the laboratory. Laboratory samples were adjusted to constant photon flux densities between 7 and 569 μmol photons·m ? 2·s ? 1 in a 16:8 light:dark photoperiod. Under field conditions the daily amplitudes reached up to approximately 2000 μmol photons·m ? 2·s ? 1 within a natural daily light course. Over the course of 14 days the light doses resulting from those different regimes are similar for both treatments. An increasing growth rate per day with increasing light doses was observed in the laboratory. Growth was saturated at 113 mol photons·m ? 2·14 d ? 1. Light saturation points (Ek) of photosynthesis increased with increasing light doses for both field and laboratory samples, and all Ek values were significantly related to the growth light dose. A correlation between fresh weight‐related lutein content and growth light dose was found for laboratory samples only, whereas the lutein:chlorophyll a (chl a) ratio was strongly correlated with Ek for laboratory and field samples. The content of chl a and phycoerythrin (PE) per fresh weight decreased significantly with increasing light doses under field conditions. Simultaneously, the PE:chl a ratio increased, whereas this ratio was not influenced by laboratory treatments. The correspondence of Ek values for field and laboratory treatments indicated that they were affected mainly by light dose. However, the variability in pigmentation was mainly dependent on temporal variability in light intensity (the amplitude of variations in incident light).  相似文献   

14.
The bloom‐forming cyanobacterium Microcystis aeruginosa Kütz 854 was cultured with 1.05 W·m?2 UV‐B for 3 h every day, and its growth, pigments, and photosynthesis were investigated. The specific growth rates represented by chl a concentration and OD750 were inhibited 8% and 9% by UV‐B exposure, respectively. Six days of UV‐B treatment significantly reduced cellular contents of phycocyanin and allophycocyanin by 32% and 62%, respectively, and markedly increased the carotenoid content by 27%, but had little effect on the chl a content. The initial values of optimal photosynthetic efficiency for UV‐B treated samples were, respectively, 52%, 87%, and 93% of controls on days 4, 7, and 10 of growth. The light‐saturated photosynthetic rates at day 6 were significantly lower than controls grown without UV‐B. The probability of electron transfer beyond QA decreased during UV‐B exposure, and this indicated that the acceptor side of PSII was one of main damage sites. The adaptation of M. aeruginosa 854 to UV‐B radiation could be observed from light‐saturated photosynthetic rates on day 13 and diurnal changes of chl fluorescence during the late growth phase. When both exposed to higher UV‐B, samples cultured under 1.05 W·m?2 UV‐B for 9 days recovered faster than controls. It is suggested that M. aeruginosa 854 had at least three adaptive strategies to cope with the enhanced UV‐B: increasing the synthesis of carotenoids to counteract reactive oxidants caused by UV‐B exposure, degrading phycocyanin and allophycocyanin to avoid further damage to DNA and reaction centers, and enhancing the repair of UV‐B induced damage to the photosynthetic apparatus.  相似文献   

15.
Metal oxyhydroxide precipitates that form from acid mine drainage (AMD) may indirectly limit periphyton by sorbing nutrients, particularly P. We examined effects of nutrient addition on periphytic algal biomass (chl a), community structure, and carbon and nitrogen content along an AMD gradient. Nutrient diffusing substrata with treatments of +P, +NP and control were placed at seven stream sites. Conductivity and SO4 concentration ranged over an order of magnitude among sites and were used to define the AMD gradient, as they best indicate mine discharge sources of metals that create oxyhydroxide precipitates. Aqueous total phosphorous (TP) ranged from 2 to 23 μg · L?1 and significantly decreased with increasing SO4. Mean chl a concentrations at sites ranged from 0.2 to 8.1 μg · cm?2. Across all sites, algal biomass was significantly higher on +NP than control treatments (Co), and significantly increased with +NP. The degree of nutrient limitation was determined by the increase in chl a concentration on +NP relative to Co (response ratio), which ranged from 0.6 to 9.7. Response to nutrient addition significantly declined with increasing aqueous TP, and significantly increased with increasing SO4. Thus, nutrient limitation of algal biomass increased with AMD impact, indicating metal oxyhydroxides associated with AMD likely decreased P availability. Algal species composition was significantly affected by site but not nutrient treatment. Percent carbon content of periphyton on the Co significantly increased with AMD impact and corresponded to an increase in the relative abundance of Chlorophytes. Changes in periphyton biomass and cellular nutrient content associated with nutrient limitation in AMD streams may affect higher trophic levels.  相似文献   

16.
Stratospheric ozone depletion increases the amount of ultraviolet‐B radiation (UVBR) (280–320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)‐fixing filamentous bloom‐forming cyanobacterium in freshwater, was individually cultured in N‐deficient and N‐enriched media for long‐term acclimation before being subjected to ultraviolet‐B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m?2 treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv/Fm) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N‐deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m?2) exposure during the recovery period. Significantly increased (~830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.  相似文献   

17.
Growth rate, pigment composition, and noninvasive chl a fluorescence parameters were assessed for a noncalcifying strain of the prymnesiophyte Emiliania huxleyi Lohman grown at 50, 100, 200, and 800 μmol photons·m?2·s?1. Emiliania huxleyi grown at high photon flux density (PFD) was characterized by increased specific growth rates, 0.82 d?1 for high PFD grown cells compared with 0.38 d?1 for low PFD grown cells, and higher in vivo chl a specific attenuation coefficients that were most likely due to a decreased pigment package, consistent with the observed decrease in cellular photosynthetic pigment content. High PFD growth conditions also induced a 2.5‐fold increase in the pool of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin responsible for dissipation of excess energy. Dark‐adapted maximal photochemical efficiency (Fv/Fm) remained constant at around 0.58 for cells grown over the range of PFDs, and therefore the observed decline, from 0.57 to 0.33, in the PSII maximum efficiency in the light‐adapted state, (Fv′/Fm′), with increasing growth PFD was due to increased dissipation of excess energy, most likely via the xanthophyll cycle and not due to photoinhibition. The PSII operating efficiency (Fq′/Fm′) decreased from 0.48 to 0.21 with increasing growth PFD due to both saturation of photochemistry and an increase in nonphotochemical quenching. The changes in the physiological parameters with growth PFD enable E. huxleyi to maximize rates of photosynthesis under subsaturating conditions and protect the photosynthetic apparatus from excess energy while supporting higher saturating rates of photosynthesis under saturating PFDs.  相似文献   

18.
Phytoplankton growth rate in response to irradiance can be approximated by a hyperbola defined by three coefficients: i) initial slope (α); ii) asymptote (μm); and, iii) X-axis intercept or compensation irradiance (Ic). To mathematically represent the interaction of temperature and irradiance on growth rate, one must describe the relationship between these constants and temperature. The marine diatom, Skeletonema costatum (Greville) Cleve, was grown in unialgal culture at different levels of irradiance and 2-3 photoperiods at 0, 5, 10, 16 and 22 C. The value of Ic is ca. 1.0 ly·day?1 or less at all temperatures. The initial slope (div·ly?1) is a “u-shaped” function of temperature described by the second degree polynomial, α= 0.25–0.02T+0.001T2. Within the range 0–10 C, μm (div·day?1) is an exponential function of temperature described by the equation, μm= 0.48 exp (0.126T). At each temperature and selected levels of irradiance, cell size and cellular content of C, N and chl a were determined. The C:chl a and N:chl a ratios increased with irradiance because of increases in C and decreases in chl a. At lower temperatures (0, 5, 10 C), the rate of increase of both ratios with irradiance was greater than at the higher temperatures (16, 22 C). Cellular content of N was independent of irradiance and temperature, and the C:N ratio ranged from 5 to 8 with a slight tendency to lower values at low irradiance. Cell volume was not influenced by either temperature or irradiance.  相似文献   

19.
A planktonic alga similar in general morphology and pigments to Aureococcus anophagefferens Hargraves and Sieburth has caused persistent and ecologically damaging blooms along the south Texas coast. Experiments using 100 μM NO3?, NO2?, and NH4+ demonstrated that the alga could not use NO3? for growth but could use NO2? and NH4+. Doubling iron or trace metal concentrations did not permit growth on NO3?. Chemical composition data for cultures grown in excess NO3? or NH4+, respectively, were as follows: N·cell?1 (0.88 vs. 1.3 pg), C:N ratio (25:1 vs. 6.4:1), C:chlorophyll a (chl a) (560:1 vs. 44:1), and chl a·cell?1 (0.033 vs. 0.16 pg). These data imply that cells supplied with NO3? were N-starved. Culture addition of 10 mM final concentration chlorate (a nitrate analog) did not affect the Texas isolate while NO3? utilizing A. anophagefferens was lysed, suggesting that the NO3? reductase of the Texas isolate is nonfunctional. Rates of primary productivity determined during a dense bloom indicated that light-saturated growth rates were ca. 0.45 d?1, which is similar to maximum rates determined in laboratory experiments (0.58 d?1± 0.16). However, chemical composition data were consistent with the growth rate of these cells being limited by N availability (C:N 28, C:chl a 176, chl a·cell?1 0.019). Calculations based on a mass balance for nitrogen suggest that the bloom was triggered by an input of ca. 69 μM NH4+ that resulted from an extensive die-off of benthos and fish.  相似文献   

20.
Alkaline phosphatase activities of the diazotrophic marine cyanobacterium Trichodesmium were studied among natural populations in the northern Red Sea and in laboratory cultures of Trichodesmium sp. strain WH9601. Open-water tuft-shaped colonies of Trichodesmium showed high alkaline phosphatase activities with 2.4–11.7 μmol p-nitrophenylphosphate (PNPP) hydrolyzed·μg chl a 1·h 1, irrespective of date or origin of the sample. Coastal populations of the Trichodesmium tuft colonies had low alkaline phosphatase activities with 0.2–0.5 μmol PNPP·μg chl a 1·h 1. An exception was the Trichodesmium fall maximum, when both tuft colonies and the plankton community (<100 μm) had alkaline phosphatase activities of 0.6–7.4 μmol PNPP·μg chl a 1·h 1. Likewise, the more rare puff and bow-tie colonies of Trichodesmium spp. in coastal waters had elevated alkaline phosphatase activities (0.8–1.6 μmol PNPP·μg chl a 1·h 1) as compared with tuft colonies coinhabiting the same waters. Intact filaments of tuft-forming Trichodesmium sp. strain WH9601 from phosphate-replete cultures had a base alkaline phosphatase activity of 0.5 μmol PNPP·μg chl a 1·h 1. This activity underwent a 10-fold increase in phosphate-deplete cultures and in cultures supplied with glycerophosphate as the sole P source. The elevated level of alkaline phosphatase activity was sustained in P-deplete cultures, but it declined in cultures with glycerophosphate. The decline is suggested to result from feedback repression of alkaline phosphatase synthesis by the phosphate generated in the glycerophosphate hydrolysis. The enhanced alkaline phosphatase activities of Trichodesmium spp. populations provide evidence that P stress is an important factor in the ecology of Trichodesmium in the northern Red Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号