首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
Natural populations of pennate diatoms collected from the mudflats of a Georgia salt marsh were cleansed by differential centrifugation and tested for their ability to assimilate and respire 14C-acetate, lactate and glucose at 1 μM concentrations. A correction was made for contaminating bacterial activity. Utilization rates were measured in the light and dark and in the presence of a second substrate. Mean incorporation rates were (in pmol ·μg chl a?1· h?1± SE): acetate, 117 ± 37; lactate, 53.7 ± 20.4; glucose 13.0 ± 5.8. Using a carbon/chlorophyll ratio of 53.2 and a generation time of 48 h we calculate these algae could obtain up to 1% of their carbon heterotrophically if several usable substrates were each available at 1 μM concentrations.  相似文献   

2.
In spring 2005, monthly sampling was carried out at a sublittoral site near Tautra Island. Microphytobenthic identification, abundance (ABU), and biomass (BIOM), were performed by microscopic analyses. Bacillariophyceae accounted for 67% of the total ABU, and phytoflagellates constituted 30%. The diatom floristic list consisted of 38 genera and 94 species. Intact light‐harvesting pigments chl a, chl c, and fucoxanthin and their derivatives were identified and quantified by HPLC. Photoprotective carotenoids were also observed (only as diadinoxanthin; no diatoxanthin was detected). Average fucoxanthin content was 4.57 ± 0.45 μg fucoxanthin · g sediment dry mass?1, while the mean chl a concentration was 2.48 ± 0.15 μg · g?1 dry mass. Both the high fucoxanthin:chl a ratio (considering nondegraded forms) and low amounts of photoprotective carotenoids indicated that the benthic microalgal community was adapted to low light. Microphytobenthic primary production was estimated in situ (MPPs, from 0.15 to 1.28 mg C · m?2 · h?1) and in the laboratory (MPPp, from 6.79 to 34.70 mg C · m?2 · h?1 under light saturation) as 14C assimilation; in April it was additionally estimated from O2‐microelectrode studies (MPPO2) along with the community respiration. MPPO2 and the community respiration equaled 22.9 ± 7.0 and 7.4 ± 1.8 mg C · m?2 · h?1, respectively. A doubling of BIOM from April to June in parallel with a decreasing photosynthetic activity per unit chl a led us to suggest that the microphytobenthic community was sustained by heterotrophic metabolism during this period.  相似文献   

3.
The chl a specific absorption coefficients [a* (λ), m2·mg chl a ? 1] were examined in chemostat culture of the Prymnesiophyceae Isochrysis galbana (Parke) under a 12:12‐h light:dark cycle at low light (75 μmol photons·m ? 2·s ? 1) and high light (500 μmol photons· m ? 2·s ? 1) conditions. Other associated measurements such as pigment composition, cell density, and diameter as the measure of cell size were also made at the two light regimes every 2 h for 2 days to confirm the periodicity. A distinct diel variability was observed for the a* (λ) with maxima near dawn and minima near dusk. The magnitude of diel variation in a* (440) was 15% at low light and 22% at high light. Pronounced diel patterns were observed for cell size with minima near dawn and maxima near dusk. The magnitude of diel variation in cell size was 9.3% at low light and 21% at high light. The absorption efficiency factors [Q a (440)] were determined by reconstruction using intracellular concentrations of pigments and cell size. The Q a (440) also showed a distinct diel variability, with minima near dawn and maxima near dusk. The diel variation in a* (λ) and Q a (λ) was primarily caused by changes in cell size due to growth, although there was some influence from diel variations in the intracellular pigment concentrations. The results presented here indicated that diel variation in a* (λ) was an important component of the optical characterization of phytoplankton.  相似文献   

4.
Analysis of reflectance spectra was used to monitor the conversion of diadinoxanthin (DD) into diatoxanthin (DT) in two benthic diatom species, Amphora coffeaeformis (C. Agardh) Kütz. and Cylindrotheca closterium (Ehrenb.) J. C. Lewin et Reiman, cultured at high light (HL, 400 μmol · m?2 · s?1 PAR) and low light (LL, 25 μmol · m?2 · s?1 PAR). Cultures were exposed to saturating light for 32 min. HL cultures of both species showed higher (DT + DD) content, whereas LL cultures exhibited higher chl a and fucoxanthin content. DD to DT conversion, measured by HPLC, occurred mainly in the first 2 min (LL) or 5 min (HL) after exposure to saturating light. Nonphotochemical quenching (NPQ), measured by PAM fluorescence, showed the same pattern as DT/(DD + DT), resulting in a linear relationship between these parameters. Addition of dithiothreitol (DTT) blocked the conversion of DD into DT and significantly reduced NPQ induction. Reflectance spectra showed no obvious change after light exposure. However, second derivative spectra (δδ) showed a shift in reflectance from 487 to 508 nm, which was not present for DTT‐treated samples. Changes in δδ487 were strongly correlated with changes in DD (r = 0.76), while changes in δδ508 were strongly correlated with changes in DT (r = 0.94). The best index to estimate DD to DT conversion was δδ508/δδ630 (r = 0.87). This index was very sensitive to minute changes that occurred immediately after exposure to light and was species insensitive. Good relationships were observed between indices for xanthophyll cycle activation (DD to DT conversion and NPQ induction) and the second derivative spectra. With further in situ validation, this index may prove to be highly useful for investigation into aquatic global photoregulation mechanisms in diatom‐dominated samples.  相似文献   

5.
The photoprotective response in the dinoflagellate Glenodinium foliaceum F. Stein exposed to ultraviolet‐A (UVA) radiation (320–400 nm; 1.7 W · m2) and the effect of nitrate and phosphate availability on that response have been studied. Parameters measured over a 14 d growth period in control (PAR) and experimental (PAR + UVA) cultures included cellular mycosporine‐like amino acids (MAAs), chls, carotenoids, and culture growth rates. Although there were no significant effects of UVA on growth rate, there was significant induction of MAA compounds (28 ± 2 pg · cell?1) and a reduction in chl a (9.6 ± 0.1 pg · cell?1) and fucoxanthin (4.4 ± 0.1 pg · cell?1) compared to the control cultures (3 ± 1 pg · cell?1, 13.3 ± 3.2 pg · cell?1, and 7.4 ± 0.3 pg · cell?1, respectively). In a second investigation, MAA concentrations in UVA‐exposed cultures were lower when nitrate was limited (P < 0.05) but were higher when phosphate was limiting. Nitrate limitation led to significant decreases (P < 0.05) in cellular concentration of chls (chl c1, chl c2, and chl a), but other pigments were not affected. Phosphate availability had no effect on final pigment concentrations. Results suggest that nutrient availability significantly affects cellular accumulation of photoprotective compounds in G. foliaceum exposed to UVA.  相似文献   

6.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   

7.
The combined effects of ammonium concentration and UV radiation on the red alga Porphyra columbina (Montagne) from the Patagonian coast (Chubut, Argentina) was determined using short‐term (less than a week) experimentation. Discs of P. columbina were incubated with three ammonium concentrations (0, 50, and 300 μM NH4Cl) in anilluminated chamber (PAR=300 μmol photons·m?2·s?1, UVA=15 W·m?2, UVB=0.7 W·m?2) at 15°C. Algae incubated at 300 μM ammonium showed a significant increase (P<0.05) in the concentration of mycosporine‐like amino acids (MAAs) compared with the initial value or with the other ammonium treatments. The increase of MAAs was, however, a function of the quality of irradiance received, with a higher increase in samples exposed to UVA compared with UVB (29% and 5% increase, respectively). However, UVB radiation was more effective in inducing MAA synthesis per unit energy received by the algae. Samples exposed to PAR only had an intermediate increase in MAA concentration of 16%. Chl a concentration decreased through the incubation with the greatest decrease at high ammonium concentration. Phycobiliprotein (BP) decreased through time with the smallest decrease occurring at high ammonium concentration. Photoinhibition (as a decrease of optimal quantum yield) was significantly greater under nitrogen‐deprived conditions than that under replete ammonium levels. Maximal gross photosynthesis (GPmax), as oxygen evolution, and maximal electron transport rate (ETRmax), as chl fluorescence, increased with the ammonium concentration. Positive relationships between maximal GP or ETR and pigment ratios (BP/chl a and MAAs/chl a) and negative relationships with chl a concentration were found.  相似文献   

8.
Diatoms are frequently exposed to high light (HL) levels, which can result in photoinhibition and damage to PSII. Many microalgae can photoreduce oxygen using the Mehler reaction driven by PSI, which could protect PSII. The ability of Nitzschia epithemioides Grunow and Thalassiosira pseudonana Hasle et Heimdal grown at 50 and 300 μmol photons · m?2 · s?1 to photoreduce oxygen was examined by mass spectrometric measurements of 18O2. Both species exhibited significant rates of oxygen photoreduction at saturating light levels, with cells grown in HL exhibiting higher rates. HL‐grown T. pseudonana had maximum rates of oxygen photoreduction five times greater than N. epithemoides, with 49% of electrons transported through PSII being used to reduce oxygen. Exposure to excess light (1,000 μmol photons · m?2 · s?1) produced similar decreases in the operating quantum efficiency of PSII (Fq′/Fm′) of low light (LL)‐ and HL‐grown N. epithemoides, whereas HL‐grown T. pseudonana exhibited much smaller decreases in Fq′/Fm′ than LL‐grown cells. HL‐grown T. pseudonana and N. epithemioides exhibited greater superoxide and hydrogen peroxide production, higher activities (in T. pseudonana) of superoxide dismutase (SOD) and ascorbate peroxidase (APX), and increased expression of three SOD‐ and one APX‐encoding genes after 60 min of excess light compared to LL‐grown cells. These responses provide a mechanism that contributes to the photoprotection of PSII against photodamage.  相似文献   

9.
Calcifying and a noncalcifying strains of Emiliania huxleyi were cultured in nutrient replete turbidostats under a photon flux density (PFD) gradient from 50 to 600 μmol E·m?2·s?1. For both strains, growth was PFD‐saturated at 300 μmol E·m?2·s?1. The strains, although with clearly different physiological properties due to the presence or absence of calcification, showed the same trends and magnitude of change in their pigment compliment as a function of PFD. Light‐controlled pigment composition and the trends of change in pigment composition were identical in both strains. Fucoxanthin (Fuco) was the major carotenoid in the calcifying strain, while in the noncalcifying strain this role was assumed by 19′ hexanoyloxyfucoxanthin (19 Hex). The photoprotective pigments and 19 Hex, normalized to chl a, increased with increasing light, while chl a content per cell and chl c's and Fuco, normalized to chl a, decreased with increasing PFD. The sum of all carotenoids normalized to chl a was remarkably similar in all PFDs used. Collectively, our results suggest that 19 Hex was synthesized from Fuco with light as a modulating factor and that the total amount of carotenoids is strain‐specific and synthesized/catabolized in tandem with chl a to a genetically predefined level independent of PFD.  相似文献   

10.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

11.
We studied chlorophyll a (chl. a), biovolume and species composition of benthic algae and phytoplankton in the eutrophic lower River Spree in 1996. The chl. a concentration was estimated as 3.5 (2.7–4.5) µg/cm2 for epipsammon, 9.4 (7.4–11.9) µg/cm2 for epipelon and 6.7 (5.7–7.8) µg/cm2 for the epilithon (median and 95% C. L.). The mean total biomass of benthic algae was significantly higher (6.0 µg chl. a/cm2) than the areal chl. a content of the pelagic zone (1.6 µg chl. a/cm2). Although certain phytoplankton taxa were abundant in the periphyton, benthic taxa generally dominated the assemblages. Seasonal dynamics of benthic algae were probably controlled by light and nitrate supply (sand), discharge fluctuations (sand, mud) and invertebrate grazing (stones). This paper shows the importance of benthic algae even in phytoplankton‐rich lowland rivers with sandy or muddy sediments. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We compared autotrophic growth of the dinoflagellate Karlodinium micrum (Leadbeater et Dodge) and the cryptophyte Storeatula major (Butcher ex Hill) at a range of growth irradiances (Eg). Our goal was to determine the physiological bases for differences in growth–irradiance relationships between these species. Maximum autotrophic growth rates of K. micrum and S. major were 0.5 and 1.5 div.·d?1, respectively. Growth rates were positively correlated with C‐specific photosynthetic performance (PPC, g C·g C?1·h?1) (r2=0.72). Cultures were grouped as light‐limited (LL) and high‐light (HL) treatments to allow interspecific comparisons of physiological properties that underlie the growth–irradiance relationships. Interspecific differences in the C‐specific light absorption rate (EaC, mol photons·g C?1·h?1) were observed only among HL acclimated cultures, and the realized quantum yield of C fixation (φC(real.), mol C·mol photons?1) did not differ significantly between species in either LL or HL treatments. The proportion of fixed C that was incorporated into new biomass was lower in K. micrum than S. major at each Eg, reflecting lower growth efficiency in K. micrum. Photoacclimation to HL in K. micrum involved a significant loss of cellular photosynthetic capacity (Pmaxcell), whereas in S. major, Pmaxcell was significantly higher in HL acclimated cells. We conclude that growth rate differences between K. micrum and S. major under LL conditions relate primarily to cell metabolism processes (i.e. growth efficiency) and that reduced chloroplast function, reflected in PPC and photosynthesis–irradiance curve acclimation in K. micrum, is also important under HL conditions.  相似文献   

13.
The psychrophilic diatom Fragilariopsis cylindrus (Grunow) Krieger in Helmcke & Krieger was used to investigate photosynthesis and growth under freezing temperatures. Gene expression during a temperature shift from +5° C to ?1.8° C was studied under 3 and 35 μmol photons·m?2·s?1 by using a macroarray. These measurements were paralleled by determination of fluorescence induction at PSII and pigment analysis. The shift to ?1.8° C at 35 μmol photons·m?2·s?1 caused a marginal decrease of photosynthetic quantum yield (Fv/Fm) from 0.61 to 0.52 with fast recovery after 1 day. The ratio of chl c to chl a increased from 3.1 to 5.5, and the ratio of diatoxanthin to diadinoxanthin increased from 0.7 to 5.0. Genes encoding proteins of PSII (psbA, psbC) and for carbon fixation (rbcL) were down‐regulated, whereas genes encoding chaperons (hsp70) and genes for plastid protein synthesis and turnover (elongation factor EfTs, ribosomal protein rpS4, ftsH protease) were up‐regulated. In contrast, cold exposure at 3 μmol photons·m?2·s?1 induced a marginal increase in Fv/Fm from 0.61 to 0.63 and a strong increase in fucoxanthin concentrations from 0.04 up to 0.12 pg·cell?1. This was paralleled by up‐regulation of fcp genes. The ratio of chl c to chl a also increased from 3.1 to 4.2, as did the ratio of diatoxanthin to diadinoxanthin from 0.7 to 2.2. Down‐regulation of psbA, psbC, and rbcL could also be measured but not up‐regulation of hsp70, EfTs, rpS4, and the ftsH protease. The latter genes are probably necessary to avoid cold shock photoinhibition only at higher light intensities.  相似文献   

14.
The composition of algal species and pigments and the structural and functional characteristics of the algal community were investigated in an acid stream of southwestern Spain, the Río Tinto. The algal community had low diversity and showed few seasonal differences. It was mainly made up of Klebsormidium flaccidum Kütz. (Silva, Mattox & Blackwell) that produced long greenish or purplish filaments, Pinnularia acoricola Hust. (producing brown patches) and Euglena mutabilis Schmitz. The algal filaments made up a consistent biofilm that also included fungal hyphae, iron bacterial sheaths, diatoms, and mineral particles. HPLC analyses on Río Tinto samples showed that undegraded chl accounted for 67% of the total chl in the filamentous patches but were a minority in the brown patch (2.6%). The brown patch had a concentration of carotenoids eight times lower than that observed in the green patch. When chl concentrations were weighted for the proportion of the different patches on the streambed, undegraded chl a accounted for 89.2 mg chl a·m ? 2 of stream surface area (5.4 g C·m ? 2). This high algal biomass was supported by relatively high nutrient concentrations and by a high phosphatase activity (Vmax = 137.7 nmol methylumbelliferyl substrate·cm ? 2·h ? 1 1 Received 15 July 2002. Accepted 17 February 2003. , Km = 0.0045 μM). The remarkable algal biomass in Río Tinto potentially contributed to the bacterial–fungal community and to the macroinvertebrate community and emphasizes the role that the algae may have in the organic matter cycling and energy flow in extreme systems dominated by heterotrophic microorganisms.  相似文献   

15.
The acclimation of the photosynthetic apparatus of Palmaria palmata (L.) to light intensity was examined in the field and under laboratory conditions. Algae from 3 different shore levels and from laboratory cultures adapted to 6 different photon flux densities were compared. This was done on the basis of light doses, which were delivered by different light regimes in the field and in the laboratory. Laboratory samples were adjusted to constant photon flux densities between 7 and 569 μmol photons·m ? 2·s ? 1 in a 16:8 light:dark photoperiod. Under field conditions the daily amplitudes reached up to approximately 2000 μmol photons·m ? 2·s ? 1 within a natural daily light course. Over the course of 14 days the light doses resulting from those different regimes are similar for both treatments. An increasing growth rate per day with increasing light doses was observed in the laboratory. Growth was saturated at 113 mol photons·m ? 2·14 d ? 1. Light saturation points (Ek) of photosynthesis increased with increasing light doses for both field and laboratory samples, and all Ek values were significantly related to the growth light dose. A correlation between fresh weight‐related lutein content and growth light dose was found for laboratory samples only, whereas the lutein:chlorophyll a (chl a) ratio was strongly correlated with Ek for laboratory and field samples. The content of chl a and phycoerythrin (PE) per fresh weight decreased significantly with increasing light doses under field conditions. Simultaneously, the PE:chl a ratio increased, whereas this ratio was not influenced by laboratory treatments. The correspondence of Ek values for field and laboratory treatments indicated that they were affected mainly by light dose. However, the variability in pigmentation was mainly dependent on temporal variability in light intensity (the amplitude of variations in incident light).  相似文献   

16.
The 2006 completion of the circum‐island Compact Road on the island of Babeldaob in the Republic of Palau resulted in several deforested stream reaches with modified stream channels. To determine the impacts of deforestation and road construction, various ecosystem parameters were compared between road‐impacted reaches, reforested savanna reaches, and forested reaches. Compared to adjacent forested reaches, road‐impacted reaches received significantly more light (0.4 ± 0.1 vs. 87.8 ± 4.1 % light transmittance, respectively), were significantly warmer (25.7 ± 0.1 vs. 26.1 ± 0.1°C, respectively), and received higher nutrient and sediment loads, all of which were attributed to the removal of riparian vegetation and increased surface runoff from the road. These differences were believed to have shifted the benthic algal community in road‐impacted reaches from diatoms to filamentous algae with significantly greater chl a biomass (10×) and benthic algal ash free dry mass AFDM (3×) compared to adjacent forested reaches. Savanna‐impacted and forested reaches had similar chl a, algal AFDM, and received similar amounts of light. Nutrient and sediment concentrations varied between the two reach types. Results from this study emphasize the need for the maintenance of riparian forests especially with predicted increases in population, development, and deforestation. Future studies are needed to determine effective riparian widths and riparian forest community structure to help resource managers and land owners protect and preserve the many ecosystem services that Palauan streams and watersheds provide.  相似文献   

17.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

18.
Three photosynthetic parameters of 7 species of marine diatoms were studied using Na214CO3 at 5–8 C using log phase axenic cultures. The cell volumes of the different species varied from 70 μm3 to 40 × 105μm3. The present experiment is consistent with the interpretation that the initial slope α (mg C · [mg chl a]?1· h?1· w?1· m2) of photosynthesis vs. light curves is controlled by self-shading of chlorophyll a in the cell. Pm, the rate of photosynthesis at light saturation (mg C · [mg cell, C]?1· h?1) and R, the intercept at zero light intensity (mg C · [mg cell C]?1· H?1) are both dependent on the ratio of surface area to volume of cell.  相似文献   

19.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

20.
Photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum Hulbert, Gymnodinium galatheanum Braarud, and two strains of Prorocentrum minimum (Pavillard)Schiller were evaluated with respect to pigment composition, light-harvesting characteristics, carbon and nitrogen contents, and growth rates in shade- and light-adapted cells. The two former species were grown at scalar irradiances of 30 and 170 μmol · m ?2 at a 12-h daylength at 20° C. The two strains of P. minimum were grown at 35 and 500 μmol. m?2· s?1 at a 2-h daylength at 20° C. For the first time, chlorophyll (chl) c3, characteristic of several bloom-forming prymnesiophytes, was detected in G. aureolum and G. galatheanum. Photoadaptional status affected the pigment composition strongly, and the interpretation of the variation depended on whether the pigment composition was normalized per cell, carbon, or chl a. Species-specific and photoadaptional differences in chl a-specific absorption (°ac, 400–700 nm) and chl a-normalized fluorescence excitation spectra of photosystem II fluorescence with or without addition of DCMU (°F and °FDCMU 400–700 nm) were evident. Gyrodinium aureolum and G. galatheanum exhibited in vivo spectral characteristics similar to chl c3-containing prymnesiophytes in accordance with their similar pigmentation. Prorocentrum minimum had in vivo absorption and fluorescence characteristics typical for peridinin-containing dinoflagellates. Species-specific differences in in vivo absorption were also observed as a function of package effect vs. growth irradiance. This effect could be explained by differences in intracellular pigment content, cell size/shape, and chloroplast morphology/numbers. Light- and shade-adapted cells of P. minimum contained 43 and 17% of photoprotective carotenoids (diadino + diatoxanthin) relative to chl a, respectively. The photoprotective function of these carotenoids was clearly observed as a reduction in °F and °F DCMU at 400–540 nm compared to °ac in light-adapted cells of P. minimum. Spectrally weighted light absorption (normalized to chl a and carbon, 400–700 nm) varied with species and growth conditions. The use of quantum-corrected and normalized fluorescence excitation spectra with or without DCMU-treated cells to estimate photosynthetically usable light is discussed. The usefulness of in vitro absorption and fluorescence excitation spectra for estimation of the degradation status of chl a and the ratio of chl a to total pigments is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号