首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The photoprotective response in the dinoflagellate Glenodinium foliaceum F. Stein exposed to ultraviolet‐A (UVA) radiation (320–400 nm; 1.7 W · m2) and the effect of nitrate and phosphate availability on that response have been studied. Parameters measured over a 14 d growth period in control (PAR) and experimental (PAR + UVA) cultures included cellular mycosporine‐like amino acids (MAAs), chls, carotenoids, and culture growth rates. Although there were no significant effects of UVA on growth rate, there was significant induction of MAA compounds (28 ± 2 pg · cell?1) and a reduction in chl a (9.6 ± 0.1 pg · cell?1) and fucoxanthin (4.4 ± 0.1 pg · cell?1) compared to the control cultures (3 ± 1 pg · cell?1, 13.3 ± 3.2 pg · cell?1, and 7.4 ± 0.3 pg · cell?1, respectively). In a second investigation, MAA concentrations in UVA‐exposed cultures were lower when nitrate was limited (P < 0.05) but were higher when phosphate was limiting. Nitrate limitation led to significant decreases (P < 0.05) in cellular concentration of chls (chl c1, chl c2, and chl a), but other pigments were not affected. Phosphate availability had no effect on final pigment concentrations. Results suggest that nutrient availability significantly affects cellular accumulation of photoprotective compounds in G. foliaceum exposed to UVA.  相似文献   

2.
Nitrogen uptake studies were conducted during an aestival “brown tide” bloom in Shinnecock Bay, Long Island, New York. The same station was sampled in late July and mid-August 1995 when Aureococcus anophagefferens composed >90% and 30–40% of the total cell density, respectively. Experiments were designed to examine the effect of incubation duration on the uptake kinetics, and the effect of light and temperature dependencies of NH4+, urea, and NO3? uptake. Maximum specific uptake rates (V'max) decreased in the order NH4+, urea, NO3? and were nonlinear with time for NH4+ and urea, both of which exhibited an exponential decline between 1 and 10 min and then did nut significantly change for 60 min. Nitrogen uptake kinetic experiments exhibited a typical hyperbolic response for urea and NO3?. Half-saturation constants. (Ks) were calculated to he 0.03 and 0.12 μmol · L?1 for urea and NO3?; respectively, but could not be calculated for NH4+ under these experimental conditions. Nutrient uptake rate versus, irradiance (NI) experiments showed that maximum uptake rates occurred at ≤% of incident irradiance on both sampling dates and that values of V′max-cell (NH4+) were on average 30% greater than V′max-cell (urea). A7°–9°C temperature decrease in incubation temperature between the two NI experiments in August resulted in a 30% decrease in V′max-cell(NH4+), no change in V′max-cell(urea), and a 3–4-fold decrease in calculated Klt values for both NH4+ and urea. The results from these experiments demonstrate that A. anophagefferens has a higher affinity for NH4+ and urea than for NO3? and that this particular species is adapted to use these substrates at low irradiances and concentrations. The data presented in this study are also consistent with the hypothesis that A. anophagefferens may be an oceanic clone that was displaced by an anomalous oceanographic event.  相似文献   

3.
Clones of Skeletonema costatum (Grev.) Cl. isolated from Narragansett Bay, R.I., during different seasons were grouped according to their electrophoretic banding patterns. The growth rates, pg chlorophyll · cell?1, carbon uptake · cell?1· h?1, and carbon uptake · pg chl?1· h?1 were measured at 20°C, in a 14:10 h L:D cycle at 180 μE · m?2· s?1. Statistically significant sources of variation were found among groups of clones in growth rate, pg chl · cell?1, and carbon uptake · pg chl?1· h?1. It was concluded that there is a significant relationship between the physiological characteristics of clones isolated from populations in different seasons and patterns of genetic variation inferred from the electrophoretic studies. However, genetic diversity detected by banding patterns tends to underestimate the total genetic diversity in natural populations. The groups of clones most common in summer bloom populations had significantly higher growth rates, lower values of pg chl · cell?1, and higher rates of carbon uptake · pg chl?1· h?1 at 20°C than did the group of clones most common in winter bloom populations. However, differences among groups in these parameters at 20°C alone cannot account for the seasonal cycling of genetically variable populations of Skeletonema in Narragansett Bay. The range of growth rates among clones of this species is 0.1–5.0 divisions · d?1 under a single set of temperature and light conditions. Chlorophyll concentrations range from 0.2–1.7 pg chl · cell?1 and carbon uptake · pg chl?1· h?1 varies by a factor of 7 among clones. The range of physiological variation in this species means that it is difficult to use laboratory studies of single clones to analyze the responses of natural populations of Skeletonema.  相似文献   

4.
Paralytic shellfish toxins, pigment composition, and large subunit (LSU) rDNA sequence were analyzed for a clonal culture of Alexandrium minutum Halim isolated in 2000 from the coastal Fleet Lagoon, Dorset, United Kingdom. The HPLC pigment analysis revealed the presence of chl a, peridinin, and diadinoxanthin as major pigments and chl c1+c2 and c3, diatoxanthin, and β‐carotene as minor components. The toxins responsible for paralytic shellfish poisoning were analyzed by HPLC with postcolumn derivatization and fluorescence detection. The paralytic shellfish poisoning toxin profile of the Fleet Lagoon strain of A. minutum in exponential growth phase was dominated by gonyautoxin‐3 up to 54%, whereas gonyautoxin‐2 made up 10% and saxitoxin (STX) 36%. The average toxicity of the culture was 3.8 pg STX Eq·cell?1, and total toxin content varied from 5.6 fmol·cell?1 on day 1 to a maximum of 16.8 fmol·cell?1 during the early stationary phase. Sequence analysis of the LSU rDNA revealed the strain to be closely related to several European strains of A. minutum and one isolated from Australian waters, although most of these do not produce STX. The shallow Fleet Lagoon may provide a favorable environment for A. minutum to bloom, and the presence of highly potent saxitoxins in this strain indicates potential for future shellfish contamination.  相似文献   

5.
Eight species of marine phytoplankton commonly used in aquaculture were grown under a range of photon flux densities (PEDs) and analyzed for their fatty acid (FA) composition. Fatty and composition changed considerably at different PFDs although no consistent correlation between the relative proportion of a single FA and μ or chl a · cell?1 was apparent. Within an individual species the percentage of certain fatty acids covaried with PFDs, growth rate and/or chl a · cell?1. The light conditions which produced the greatest proportion of the essential fatty acids was species specific. Eicosapentaenoic acid. 20:5ω3 increased from 6.1% to 15.5% of the total fatty acids of Chaetoceros simplex Ostenfield grown at PFDs which decreased from 225 μE · m?2· s?1 to 6 μE · m?2· s?1, respectively. Most species had their greatest proportion of 20: 5ω3 at low levels of irradiance. Conversely, docosahexaenoic acid, 22:6ω3, decreased from 9.7% to 3.6% of the total fatty acids in Pavlova lutheri Droop as PFD decreased. The percentage of 22:6ω3 generally decreased with decreasing irradiances. In all diatoms the percentage of 16:0 was significantly correlated with PFD, and in three of five diatoms, with growth rate (μ). Results suggest that fatty acid composition is a highly dynamic component of cellular physiology, which responds significantly to variation in PFD.  相似文献   

6.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

7.
Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae‐growth‐promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L?1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L?1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L?1 NH4+, but not at 8 mg · L?1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per‐cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L?1 NH4+ was GDH activity per cell higher.  相似文献   

8.
We examined the energetic dependency of the biochemical and physiological responses of Thalassiosira pseudonana Hasle and Heimdal. Chaetoceros gracilis Schütt, Dunaliella tertiolecta Butcher, and Gymnodinium sanguineum Hirasaka to NH4+, NO3?, and urea by growing them at subsaturating and saturating photon flux (PF). At subsaturating PF, when energy was limiting, NO3? and NH4+ grown cells had similar growth rates and C and X quotas. Therefore, NO3? grown cells used up to 48% more energy than NH4+ grown cells to assimilate carbon and nitrogen. Based on our measurements of pigments, chlorophyll-a-specific in vivo absorption cross-section, and fluorescence-chlorophyll a?1, we suggest that NO3?, grown cells do not compensate for the greater energy requirements of NO3? reduction by trapping more light energy. At saturating PF, when energy is not limiting, the utilization of NO3?, compared to NH4+ resulted in lower growth rates and N quotas in Thalassiosira pseudonana and lower N quotas in Chaetoceros gracilis, suggesting enzymatic rather than energetic limitations to growth. The utilization of urea compared to Nh4+ resulted in lower growth rates in Chaetoceros gracilis and Gymnodinium sanguineum (saturating PF) and in lower N quotas in all species tested at both subsaturating and saturating PF. The high C:N ratios observed in all urea-grown species suggest that nitrogen assimilation may be limited by urea uptake or deamination and that symptoms of N limitation in microalgae may be induced by the nature of the N source in addition to the N supply rate. Our results provide new eridence that the maximum growth rates of microalgae may be limited by enzymatic processes associated with the assimilation of NO3?, or urea.  相似文献   

9.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

10.
The effects of NH4+ assimilation on dark carbon fixation and β-1,3-glucan metabolism in the N-limited marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) were investigated by chemical analysis of cell components and incorporation of 14C-bicarbonate. The diatom was grown in pH-regulated batch cultures with a 14:10 h LD cycle until N depletion. The cells were then incubated in the dark with 14C-bicarbonate, but without a source of N for 2 h, then in the dark with 63 μmol·L−1 NH4+ for 3 h. Without N, the cellular concentration of free amino acids was almost constant (∼4.5 fmol·cell−1). Added NH4+ was assimilated at a rate of 12 fmol·cell−1·h−1, and the cellular amino acid pool increased rapidly (doubled in <1 h, tripled in <3 h). The glutamine level increased steeply (45× within 3 h), and the Gln/ Glu ratio increased from 0.1 to 2.4 within 3 h. The rate of dark C fixation during N depletion was only 1.0 fmol·cell−1·h−1. The addition of NH4+ strongly stimulated dark C fixation, leading to an assimilation rate of 4.0 fmol·cell−1·h−1, corresponding to a molar C/N uptake ratio of 0.33. Biochemical fractionation of organic 14C showed no significant 14C fixation into amino acids during N depletion, but during the first 1–2 h of NH4+ assimilation, amino acids were rapidly radiolabeled, accounting for virtually all net 14C fixation. These results indicate that anaplerotic β-carboxylation is activated during NH4+ assimilation to provide C4 intermediates for amino acid biosynthesis. The level of cellular β-1,3-d-glucan was constant (16.5 pg·cell−1) during N depletion, but NH4+ assimilation activated a mobilization of 28% of the reserve glucan within 3 h. The results indicate that β-1,3-glucan in diatoms is the ultimate substrate for β-carboxylation, providing precursors for amino acid biosynthesis in addition to energy from respiration.  相似文献   

11.
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.  相似文献   

12.
Ammonium and nitrate uptake rates in the macroalgae Ulva fenestrata (Postels and Ruprecht) (Chlorophyta) and Gracilaria pacifica (Abbott) (Rhodophyta) were determined by 15N accumulation in algal tissue and by disappearance of nutrient from the medium in long‐term (4–13 days) incubations. Nitrogen‐rich algae (total nitrogen> 4% dry weight [dw]) were used to detect isotope dilution by release of inorganic unlabeled N from algal thalli. Uptake of NH4 + was similar for the two macroalgae, and the highest rates were observed on the first day of incubation (45 μmol N·g dw ? 1·h ? 1 in U. fenestrata and 32 μmol N·g dw ? 1·h ? 1 in G. pacifica). A significant isotope dilution (from 10 to 7.9 atom % enrichment) occurred in U. fenestrata cultures during the first day, corresponding to a NH4 + release rate of 11 μmol N·g dw ? 1·h ? 1. Little isotope dilution occurred in the other algal cultures. Concurrently to net NH4 + uptake, we observed a transient free amino acid (FAA) release on the first day in both macroalgal cultures. The uptake rates estimated by NH4 + disappearance and 15N incorporation in algal tissue compare well (82% agreement, defined as the percentage ratio of the lower to the higher rate) at high NH4 + concentrations, provided that isotope dilution is taken into account. On average, 96% of added 15NH4 + was recovered from the medium and algal tissue at the end of the incubation. Negligible uptake of NO3 ? was observed during the first 2–3 days in both macroalgae. The lag of uptake may have resulted from the need for either some N deprivation (use of NO3 ? pools) or physiological/metabolic changes required before the uptake of NO3 ? . During the subsequent days, NO3 ? uptake rates were similar for the two macroalgae but much lower than NH4 + uptake rates (1.97–3.19 μmol N·g dw ? 1·h ? 1). Very little isotope dilution and FAA release were observed. The agreement between rates calculated with the two different methods averaged 91% in U. fenestrata and 95% in G. pacifica. Recovery of added 15NO3 ? was virtually complete (99%). These tracer incubations show that isotope dilution can be significant in NH4 + uptake experiments conducted with N‐rich macroalgae and that determination of 15N atom % enrichment of the dissolved NH4 + is recommended to avoid poor isotope recovery and underestimation of uptake rates.  相似文献   

13.
When NH4 + or NO3 ? was supplied to NO3 ? ‐stressed cells of the microalga Dunaliella tertiolecta Butcher, immediate transient changes in chl a fluorescence were observed over several minutes that were not seen in N‐replete cells. These changes were predominantly due to nonphotochemical fluorescence quenching. Fluorescence changes were accompanied by changes in photosynthetic oxygen evolution, indicating interactions between photosynthesis and N assimilation. The magnitude of the fluorescence change showed a Michaelis‐Menten relationship with half‐saturation concentration of 0.5 μM for NO3 ? and 10 μM for NH4 + . Changes in fluorescence responses were characterized in D. tertiolecta both over 5 days of N starvation and in cells cultured at a range of NO3 ? ‐limited growth rates. Variation in responses was more marked in starved than in limited cells. During N starvation, the timing and onset of the fluorescence responses were different for NO3 ? versus NH4 + and were correlated with changes in maximum N uptake rate during N starvation. In severely N‐starved cells, the major fluorescence response to NO3 ? disappeared, whereas the response to NH4 + persisted. N‐starved cells previously grown with NH4 + alone showed fluorescence responses with NH4 + but not NO3 ? additions. The distinct responses to NO3 ? and NH4 + may be due to the differences between regulation of the uptake mechanisms for the two N sources during N starvation. This method offers potential for assessing the importance of NO3 ? or NH4 + as an N source to phytoplankton populations and as a diagnostic tool for N limitation.  相似文献   

14.
Cultures and field samples of the toxic dinoflagellate Gymnodinium catenatum Graham from Tasmania, Australia, were analyzed for pigment, fatty acid, and sterol composition. Gymnodinium catenatum contained the characteristic pigments of photosynthetic dinoflagellates, including chlorophyll a, chlorophyll c2, and the carotenoids peridinin, dinoxanthin, diadinoxanthin, diatoxanthin, and β,β-carotene. In midlogarithmic and early stationary phase cultures, the chlorophyll a content ranged 50–72 pg · cell?1, total lipids 956–2084 pg · cell?1, total fatty acids 426–804 pg · cell?1, and total sterols 8–20 pg · cell?1. The major fatty acids (in order of decreasing abundance) were 16:0, 22:6(n-3), and 20:5(n-3) (collectively 65–70% of the total fatty acids), followed by 16:1(n-7), 18:2(n-6), and 14:0. This distribution is characteristic of most dinoflagellates, except for the low abundance (<3%) of the fatty acid 18:5(n-3), considered by some authors to be a marker for dinoflagellates. The three major sterols were 4α-methyl-5α-cholest-7-en-3β-ol, 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (the dinoflagellate sterol, dinosterol), and 4α,23,24-trimethyl-5α-cholest-7-en-3β-ol. These three sterols comprised about 75% of the total sterols in both logarithmic and early stationary phase cultures, and they were also found in high proportions (22–25%) in natural dinoflagellate bloom samples. 4-Desmethyl sterols, which are common in most microalgae, were only present in trace amounts in G. catenatum. The chemotaxonomic affinities of G. catenatum and the potential for using specific signature lipids for monitoring toxic dinoflagellate blooms are discussed.  相似文献   

15.
NH4+ and NO3? uptake were measured by continuous sampling with an autoanalyzer. For Hypnea musciformis (Wulfen) Lamouroux, NO3?up take followed saturable kinetics (K2=4.9 μg-at N t?1, Vmax= 2.85 μg- at N, g(wet)?1. h?1. The ammonium uptake data fit a trucatd hyperbola, i.e., saturation was not reach at the concentrations used. NO3? uptake was reduced one-half in the presence of NH4+, but presence of NO3? had no effect on NH4+ uptake. Darkness reduced both NO3? and NH4+ uptake by one-third to one-half. For Macrocystis pyrufera (L) C. Agardh, NO3? uptake followed saturable kinetices: K2=13.1 μg-at N. l?1. Vmax=3.05 μg-at N. g(wet)?1. h?1.NH4+ uptake showed saturable kinetics at concentration below 22 μg-at N l -1 (K2=5.3 μg-at N.1–1, Vmax= 2.38 μg-at N G (wet)?1.h?1: at higher concentration uptake increased lincarly with concentrations. NO3?and NH4+ were taken up simulataneously: presence of one form did not affect uptake of the other.  相似文献   

16.
The influence of seawater velocity (1.5–12 cm · s?1) on inorganic nitrogen (N) uptake by the soft‐sediment perennial macroalga Adamsiella chauvinii (Harv.) L. E. Phillips et W. A. Nelson (Rhodophyta) was determined seasonally by measuring uptake rate in a laboratory flume. Regardless of N tissue content, water velocity had no influence on NO3? uptake in either winter or summer, indicating that NO3?‐uptake rate was biologically limited. However, when thalli were N limited, increasing water velocity increased NH4+ uptake, suggesting that mass‐transfer limitation of NH4+ is likely during summer for natural populations. Uptake kinetics (Vmax, Ks) were similar among three populations of A. chauvinii at sites with different mean flow speeds; however, uptake rates of NO3? and NH4+ were lower in summer (when N status was generally low) than in winter. Our results highlight how N uptake can be affected by seasonal changes in the physiology of a macroalga and that further investigation of N uptake of different macroalgae (red, brown, and green) during different seasons is important in determining the relative influence of water velocity on nutrient uptake.  相似文献   

17.
The feasibility of estimating phytoplankton carbon and RNA concentrations from measurements of ATP and chlorophyll a (chl a) concentrations was studied using chemostat populations of the marine diatom Thalassiosira weissflogii (Grunow) Fryxell & Hasle (= T. fluviatilis Hustedt). C:ATP and RNA:ATP ratios were studied for six additional marine species in batch culture representing five classes of phytoplankton. Statistical analyses revealed that both the growth rate and the factor limiting growth (NO3-, NH4+, PO43- or light) could alter C:ATP, RNA: ATP, C:chl a and RNA:chl a ratios by amounts which were large compared to measurement error. An analysis of variance of the batch culture results indicated that both species and the source of inorganic nitrogen (NO3-, or NH4+) had a significant effect on C:ATP and RNA:ATP ratios. Light had less of an influence on C:ATP and RNA:ATP ratios than on C:chl a and RNA:chl a ratios, and for this reason we feel that phytoplankton C and RNA concentrations can be estimated with greater reliability from ATP than from chl a measurements. The range of C:ATP and RNA:ATP values found for T. weissflogii under a variety of growth conditions was similar to that for the six additional species grown in batch culture, suggesting that this range of values is indicative of the extremes likely to occur in living cells. Our results and additional data in the literature indicate that phytoplankton C and RNA concentrations can be estimated to within a factor of two by multiplying ATP concentrations by 311 and 35, respectively, in N limited systems, and by 341 and 36, respectively in PO43- limited systems.  相似文献   

18.
One assumption underlying the use of stable nitrogen isotopes (δ15N) for determining nitrogen (N) sources is that the δ15N of primary producers reflects N sources in a predictable manner. To test this assumption, we conducted two experiments. First, we varied δ15N with constant concentration of NO3? or NH4+ to determine whether either nutrient is preferentially selected by the macroalga Enteromorpha intestinalis (L. Link) and if isotopic ratio affected selectivity. Tissue δ15N increased with δ15N supplied for both NO3? and NH4+ but sequestering of 15NH4+ was more rapid than for 15NO3?; in addition, some evidence suggested that high relative abundance of 15N may have decreased NO3? uptake. Second, we held δ15N constant and varied concentrations of either NO3? or NH4+ to determine whether fractionation is concentration dependent. Uptake of N was described by a Michaelis‐Menten equation for both NO3? and NH4+, with higher Vmax and K1/2 for NH4+ than for NO3?. There was no relationship between N concentration and tissue δ15N for either NO3? or NH4+; therefore, no selection for 14N over 15N occurred. This study demonstrated that accumulation of 15N in macroalgal tissue was predictable over a range of water δ15N values and N concentrations, suggesting that E. intestinalis may be used to assess the availability of N sources to estuarine and coastal communities. However, caution must be used when interpreting tissue δ15N depending on the primary inorganic form of N available.  相似文献   

19.
Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH4+), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (Fv/Fm) was a sensitive indicator of NH4+ toxicity, manifested by a suppression of Fv/Fm in a dose‐dependent manner. Two chlorophytes were the least sensitive to NH4+ inhibition, at concentrations of >3,000 μmoles NH4+ · L?1, followed by two estuarine diatoms that were sensitive at concentrations >1,000 μmoles NH4+ · L?1, followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 μmoles NH4+ · L?1. At non‐inhibiting concentrations of NH4+, the freshwater diatom species grew fastest, followed by the estuarine diatoms, while the chlorophytes grew slowest. Variations in growth rates with N source did not follow taxonomic divisions. Of the two chlorophytes, one grew significantly faster on nitrate (NO3?), whereas the other grew significantly faster on NH4+. All four diatoms tested grew faster on NH4+ compared with NO3?. We showed that in cases where growth rates were faster on NH4+ than they were on NO3?, the difference was not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH4+ dominates the total N pool and they will also not have a growth advantage when NO3? is dominant, as long as N concentrations are sufficient.  相似文献   

20.
The utilization of nitrogen-to-protein conversion factors (N-Prot factors) is a widely accepted and practical way to determine total protein content. The accuracy of protein determination depends on the establishment of specific N-Prot factors, since the conventional factor of 6.25 may be unsuitable for all species. This study was designed to determine the concentrations of the main nitrogenous compounds and to establish N-Prot factors specific for the following marine microalgae: Chlorella minutissima, Dunaliella tertiolecta, Hillea sp., Isochrysis galbana, Nannochloropsis oculata, Phaeodactylum tricornutum, Prorocentrum minimum, Skeletonema costatum, Synechococcus subsalsus, and Tetraselmis gracilis. Cultures were maintained under a 12-h photoperiod (300 μmol photons·m?2·s?1) at temperatures of 20.0°± 1.0° C (dark) to 23.0°± 2.0° C (light) in Walne’s culture medium without additional external carbon sources. The distribution of intracellular nitrogen was studied by determining total nitrogen (TN, by CHN [carbon, hydrogen, and nitrogen] analysis), protein N (PN, by analysis of total amino acids), and nonprotein N (NPN, determined by analysis of DNA, RNA, chlorophylls (chl) a,b, and c, and intracellular inorganic nitrogen—NO3?, NO2?, and NH3+ NH4+) in logarithmic and stationary growth phases of cultures. Variations occurred in both accumulation and distribution of PN and NPN among the species, as well as in each species during the different growth phases. Inorganic nitrogen compounds were observed to be the most important NPN source (from 6.4 ± 0.1% to 41.8 ± 4.2% of total N) in all species (except D. tertiolecta), followed by nucleic acids (from 0.8 ± 0.1% to 26.1 ± 2.4% of TN) and chlorophylls (from 0.2 ± 0.0% to 3.1 ± 0.3% of TN). Total amino acid residues ranged from 63.1 ± 4.6% up to 88.1 ± 11.2% of TN, which is in agreement with the presence of high NPN concentrations. N-Prot factors are proposed for each growth phase in the studied species, based on the ratio of amino acid residues to TN, establishing specific N-prot factors ranging from 3.60 ± 0.27 to 4.99 ± 0.64. The mean N-Prot factor for all species/growth phases was 4.58 ± 0.11. The present study shows that the use of the traditional factor 6.25 is not suitable for these marine microalgae, and possibly for other species, because it overestimates their actual protein content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号