首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bloom‐forming cyanobacterium Microcystis aeruginosa (Kütz.) Kütz. 854 was cultured with 1.05 W · m?2 ultraviolet‐B radiation (UVBR) for 3 h every day, and the CO2‐concentrating mechanism (CCM) within this species as well as effects of UVBR on its operation were investigated. Microcystis aeruginosa 854 possessed at least three inorganic carbon transport systems and could utilize external HCO3? and CO2 for its photosynthesis. The maximum photosynthetic rate was approximately the same, but the apparent affinity for dissolved inorganic carbon was significantly decreased from 74.7 μmol · L?1 in the control to 34.7 μmol · L?1 in UVBR‐treated cells. At 150 μmol · L?1 KHCO3 and pH 8.0, Na+‐dependent HCO3? transport contributed 43.4%–40.2% to the photosynthesis in the control and 34.5%–31.9% in UVBR‐treated cells. However, the contribution of Na+‐independent HCO3? transport increased from 8.7% in the control to 18.3% in UVBR‐treated cells. The contribution of CO2‐uptake systems showed little difference: 47.9%–51.0% in the control and 49.8%–47.2% in UVBR‐treated cells. Thus, the rate of total inorganic carbon uptake was only marginally affected, although UVBR had a differential effect on various inorganic carbon transporters. However, the number of carboxysomes in UVBR‐treated cells was significantly decreased compared to that in the control.  相似文献   

2.
The green macroalga Ulva pertusa Kjellman produced UV‐B absorbing compounds with a prominent absorption maximum at 294 nm in response only to UV‐B, and the amounts induced were proportional to the UV‐B doses. Under a 12:12‐h light:dark regime, the production of UV‐absorbing compounds occurred only during the exposure periods with little turnover in the dark. There was significant reduction in growth in parallel with the production of UV‐B absorbing compounds. The polychromatic action spectrum for the induction of UV‐B absorbing compounds in U. pertusa exhibits a major peak at 292 nm with a smaller peak at 311.5 nm. No significant induction was detected above 354.5 nm, and radiation below 285 nm caused significant reduction in the levels of UV‐B absorbing compounds. After UV‐B irradiation at 1.0 W·m?2 for 9 h, the optimal photosynthetic quantum yield of the samples with UV‐B absorbing compounds slightly increased relative to the initial value, whereas that of thalli lacking the compounds declined to 30%–34% of the initial followed by subsequent recovery in dim light of up to 84%–85% of the initial value. There was a positive and significant relationship between the amount of UV‐B absorbing compounds with antioxidant activity as determined by the α,α‐diphenyl‐β‐picrylhydrazyl scavenging assay. In addition to mat‐forming characteristics and light‐driven photorepair, the existence and antioxidant capacity of UV‐B absorbing compounds may confer U. pertusa a greater selective advantage over other macroalgae, thereby enabling them to thrive in the presence of intense UV‐B radiation.  相似文献   

3.
The morpho‐functional patterns of photosynthesis, measured as 14C‐fixation and chl fluorescence of PSII, also as affected by different doses of UV radiation in the laboratory were examined in the South Pacific kelp Lessonia nigrescens Bory of the coast of Valdivia, Chile (40°S). The results indicated the existence of longitudinal thallus profiles in physiological performance. In general, blades exhibited higher rates of carbon fixation and pigmentation as compared with stipes and holdfasts. Light‐independent 14C fixation (LICF) was high in meristematic zones of the blades (3.5 μmol 14C·g?1 fresh weight [FW]·h?1), representing 2%–16% (percentage ratio) of the photosynthetic 14C fixation (20 μmol 14C·g?1 FW·h?1). Exposures to UV radiation indicated that biologically effective UV‐B doses (BEDphotoinhibition300) of 200–400 kJ·m?2 (corresponding to current daily doses measured in Valdivia on cloudless summer days) inhibit photosynthetic 14C fixation of blades by 90%, while LICF was reduced by 70%. The percentage ratio of LICF to photosynthetic 14C fixation increased under UV exposure to 45%. Primary light reactions measured as maximum quantum yield (Fv/Fm) and electron transport rate (ETR) indicated a higher UV susceptibility of blades as compared with stipes and holdfasts: after a 48 h exposure to UV‐B, the decrease in the blades was close to 30%, while in the stipes and holdfasts it was <20%. The existence of translocation of labeled carbon along the blades suggests that growth at the meristem may be powered by nonphotosynthetic processes. A possible functional role of LIFC, such as during reduction of photosynthetic carbon fixation due to enhanced UV radiation, is discussed. These results in general support the idea that the UV‐related responses in Lessonia are integrated in the suite of morpho‐functional adaptations of the alga.  相似文献   

4.
The growth, photosynthetic characteristics, and competitive ability of three algal strains were investigated under different doses of ultraviolet‐B (UVB) radiation (0, 0.285, and 0.372 W · m?2). The organisms were the toxic bloom‐forming cyanobacterium Microcystis aeruginosa FACHB 912, nontoxic M. aeruginosa FACHB 469, and the green microalga Chlamydomonas microsphaera FACHB 52. In monocultures, the growth of all three strains was inhibited by UVB. In mixed cultures, enhanced UVB radiation resulted in decreased percentages of the two M. aeruginosa strains (19%–22% decrease on d 12 of the competition experiment). UVB radiation resulted in increased contents of chlorophyll a, b, and carotenoids (CAR) in C. microsphaera, and decreased contents of allophycocyanin (APC) or phycocyanin in the two Microcystis strains. All three strains showed increased levels of UVabsorbing compounds and intracellular reactive oxygen species under 0.372 W · m?2 UVB radiation, and decreased light compensation points, dark respiratory rates, and maximal quantum efficiency of PSII. After a 20 h recovery, the photosynthetic oxygen evolution of C. microsphaera was restored to its maximum value, but that of Microcystis strains continued to decrease. Nonphotochemical quenching was increased by UVB radiation in C. microsphaera, but was unaffected in the two M. aeruginosa strains. Our results indicated that C. microsphaera has a competitive advantage relative to Microcystis during exposure to UVB irradiation.  相似文献   

5.
To better understand the interactions between PAR and UV‐B radiation in microalgae, the marine chlorophyte alga Dunaliella tertiolecta was subjected to a UV‐B flux of 4.1 W·m ? 2 (unweighted) with varying PAR fluxes. Rate constants for damage and repair processes during UV‐B exposure increased with PAR flux. However, recovery after UV‐B exposure increased with PAR up to 300 μmol quanta·m ? 2·s ? 1 1 Received 17 September 2002. Accepted 19 February 2003. , beyond which photoinhibition of PSII electron transport was found to decrease recovery rates. In the absence of PAR during the post UV‐B exposure period, no recovery was seen, indicating that perhaps the lack of light available for photosynthesis depresses repair either directly or indirectly by affecting ATP synthesis. Possible mechanisms for the observed interactions between PAR and UV‐B exposure are discussed.  相似文献   

6.
The photosynthetic performance of Microcystis aeruginosa FACHB 854 during the process of UV-B exposure and its subsequent recovery under photosynthetic active radiation (PAR) was investigated in the present study. Eight hours UV-B radiation (3.15 W m−2) stimulated the increase of photosynthetic pigments content at the early stage of UV-B exposure followed by a significant decline. It suggested that UV-B damage was not an immediate process, and there existed a dynamic balance between damage and adaptation in the exposed cells. Short-term UV-B exposure severely inhibited the photosynthetic capability, but it could restore quickly after being transferred to PAR. Further investigations revealed that the PS II of M. aeruginosa FACHB 854 was more sensitive to UV-B exposure than PS I, and the oxygen-evolving complex of PS II was an important damage target of UV-B. The inhibition of photosynthetic performance caused by UV-B could be recovered to 90.9% of pretreated samples after 20 h exposure at low PAR, but it could not be recovered in the dark as well as under low PAR in the presence of Chloromycetin. It can be concluded that PAR and de novo protein synthesis were essential for the recovery of UV-B-damaged photosynthetic apparatus.  相似文献   

7.
The combined effects of ammonium concentration and UV radiation on the red alga Porphyra columbina (Montagne) from the Patagonian coast (Chubut, Argentina) was determined using short‐term (less than a week) experimentation. Discs of P. columbina were incubated with three ammonium concentrations (0, 50, and 300 μM NH4Cl) in anilluminated chamber (PAR=300 μmol photons·m?2·s?1, UVA=15 W·m?2, UVB=0.7 W·m?2) at 15°C. Algae incubated at 300 μM ammonium showed a significant increase (P<0.05) in the concentration of mycosporine‐like amino acids (MAAs) compared with the initial value or with the other ammonium treatments. The increase of MAAs was, however, a function of the quality of irradiance received, with a higher increase in samples exposed to UVA compared with UVB (29% and 5% increase, respectively). However, UVB radiation was more effective in inducing MAA synthesis per unit energy received by the algae. Samples exposed to PAR only had an intermediate increase in MAA concentration of 16%. Chl a concentration decreased through the incubation with the greatest decrease at high ammonium concentration. Phycobiliprotein (BP) decreased through time with the smallest decrease occurring at high ammonium concentration. Photoinhibition (as a decrease of optimal quantum yield) was significantly greater under nitrogen‐deprived conditions than that under replete ammonium levels. Maximal gross photosynthesis (GPmax), as oxygen evolution, and maximal electron transport rate (ETRmax), as chl fluorescence, increased with the ammonium concentration. Positive relationships between maximal GP or ETR and pigment ratios (BP/chl a and MAAs/chl a) and negative relationships with chl a concentration were found.  相似文献   

8.
Stratospheric ozone depletion increases the amount of ultraviolet‐B radiation (UVBR) (280–320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)‐fixing filamentous bloom‐forming cyanobacterium in freshwater, was individually cultured in N‐deficient and N‐enriched media for long‐term acclimation before being subjected to ultraviolet‐B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m?2 treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv/Fm) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N‐deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m?2) exposure during the recovery period. Significantly increased (~830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.  相似文献   

9.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

10.
Abstract Stress physiology on the reproductive cells of Antarctic macroalgae remained unstudied. Ascoseira mirabilis is endemic to the Antarctic region, an isolated ecosystem exposed to extreme environmental conditions. Moreover, stratospheric ozone depletion leads to increasing ultraviolet radiation (280–400 nm) at the earth's surface, thus it is necessary to investigate the capacity of reproductive cells to cope with different UV irradiances. This study is aimed to investigate the impact of exposure to different spectral irradiance on the photosynthetic performance, DNA damage and gamete morphology of the A. mirabilis. Gametangia, gametes and zygotes of the upper sublittoral brown alga A. mirabilis were exposed to photosynthetically active radiation (PAR = P; 400–700 nm), P + UV‐A radiation (UV‐A, 320–400 nm) and P + UV‐A + UV‐B radiation (UV‐B, 280–320 nm). Rapid photosynthesis versus irradiance curves of freshly released propagules were measured. Photosynthetic efficiencies and DNA damage (in terms of cyclobutane pyrimidine dimers) were determined after 1, 2, 4 and 8 h exposure as well as after 2 days of recovery in dim white light. Saturation irradiance (Ik) in freshly released propagules was 52 μmol photons m−2 s−1. Exposure for 1 h under 22 μmol photons m−2 s−1 of PAR significantly reduced the optimum quantum yield (Fv/Fm), suggesting that propagules are low light adapted. Furthermore, UVR significantly contributed to the photoinhibition of photosynthesis. Increasing dose as a function of exposure time additionally exacerbated the effects of different light treatments. The amount of DNA damage increased with the UV‐B dose but an efficient repair mechanism was observed in gametes pre‐exposed to a dose lower than 5.8 × 103 J m−2 of UV‐B. The results of this study demonstrate the negative impact of UV‐B radiation. However, gametes of A. mirabilis are capable of photosynthetic recovery and DNA repair when the stress factor is removed. This capacity was observed to be dependent on the fitness of the parental sporophyte.  相似文献   

11.
Microcystis aeruginosa Kütz. 7820 was cultured at 350 and 700 μL·L ? 1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom‐forming cyanobacterium. Doubling of CO2 concentration in the airflow enhanced its growth by 52%–77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light‐saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC‐saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3 ? levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 μL·L ? 1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3 ? concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.  相似文献   

12.
Acclimation to UV radiation (UVR) was examined in a unicellular chlorophyte isolated from fumarole fields adjacent to Mt. Erebus, Antarctica. Long‐term exposure to UVR (14 days) initially reduced the efficiency of photosynthetic energy conversion measured as the dark adapted quantum yield of PSII fluorescence (Fv/Fm) when compared with cultures not exposed to UVR. However, the UVR exposed cultures recovered to pre‐UVR exposure levels of photosynthetic efficiency by the end of the experimental period. Additionally, neither growth rates nor cell size were significantly affected by exposure to UVR. In contrast, the maximum rate of carbon fixation on a chl a basis was significantly reduced at the end of the experiment and was accompanied by a significant decrease in chl a concentrations. These results suggest a transient effect of UVR on primary photochemistry consistent with damage to PSII, possibly at the D1 protein, with more chronic effects on carbon fixation that did affect maximum photosynthetic capacity. Ultrastructural and molecular (18s rDNA) data show that this isolate from the fumoral fields of Mt. Erebus, Antarctica is a member of the genus Scenedesmus.  相似文献   

13.
In the present research, the effect of indole‐3‐butyric acid (IBA) on the growth, and the production of some primary and secondary metabolites was studied in Nostoc linckia. In this respect, algae cultures were supplied with 0, 0.01, 0.1, 1, 10, and 100 μM IBA for 14 days. IBA at concentrations of 10 and 100 μM induced algal growth expressed as fresh weight in N. linckia. Treatment with IBA at all concentrations stimulated heterocyst formation. In addition, low concentrations of IBA (0.01, 0.1, and 1 μM) had a stimulatory effect on chlorophyll a and carotenoids accumulation. In contrast, higher concentrations of IBA induced the accumulation of phycocyanin, allophycocyanin, and phycoerythrin in the treated algae. In this case, IBA at the concentration of 10 μM was more effective. A significant decrease in protein content was observed in the algae treated by 0.01 μM IBA. All concentrations of IBA caused a decrease in sugar content, but lower concentrations were more effective. IBA application in all of the concentrations except 100 μM increased oligosaccharide‐linked mycosporine‐like amino acids (OS‐MAAs) content. Lower concentrations had a more significant effect on increasing OS‐MAAs content. However the concentrations of 10 and 100 μM IBA decreased scytonemin content. These results indicated the stimulatory impact of IBA on weight, heterocyst formation, and photosynthetic pigments in N. linckia.  相似文献   

14.
Iron availability limits primary production in >30% of the world’s oceans; hence phytoplankton have developed acclimation strategies. In particular, cyanobacteria express IsiA (iron‐stress‐induced) under iron stress, which can become the most abundant chl‐binding protein in the cell. Within iron‐limited oceanic regions with significant cyanobacterial biomass, IsiA may represent a significant fraction of the total chl. We spectroscopically measured the effective cross‐section of the photosynthetic reaction center PSI (σPSI) in vivo and biochemically quantified the absolute abundance of PSI, PSII, and IsiA in the model cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that accumulation of IsiA results in a ~60% increase in σPSI, in agreement with the theoretical increase in cross‐section based on the structure of the biochemically isolated IsiA‐PSI supercomplex from cyanobacteria. Deriving a chl budget, we suggest that IsiA plays a primary role as a light‐harvesting antenna for PSI. On progressive iron‐stress in culture, IsiA continues to accumulate without a concomitant increase in σPSI, suggesting that there may be a secondary role for IsiA. In natural populations, the potential physiological significance of the uncoupled pool of IsiA remains to be established. However, the functional role as a PSI antenna suggests that a large fraction of IsiA‐bound chl is directly involved in photosynthetic electron transport.  相似文献   

15.
  • We studied the resistance of Parmotrema austrosinense to UV‐B stress. We focused on the effects of a high dose UV‐B radiation on the content of chlorophylls, carotenoids and UV‐B screening compounds.
  • Photosynthetic parameters were measured by chlorophyll fluorescence (potential and effective quantum yields, photochemical and non‐photochemical quenching) and evaluated in control and UV‐B‐treated lichens. Lichens from two different locations in Cordoba, Argentina, were selected: (i) high altitude and dry plots at (Los Gigantes) and (ii) lowland high salinity plots (Salinas Grandes).
  • UV‐B treatment led to a decrease in the content of photosynthetic pigments and UV‐B screens (absorbance decrease in 220–350 nm) in the samples from Salinas Grandes, while in Los Gigantes samples, an increase in UV‐B screen content was observed. Chlorophyll fluorescence parameters showed a UV‐B‐induced decline in FV/FM, ΦPSII and qP indicating limitation of primary photosynthetic processes in photosystem II (PSII) of symbiotic alga, more pronounced in Salinas Grandes samples. Protective mechanism of PSII were activated by the UV‐B treatment to a higher extent in samples from Salinas Grandes (NPQ 0.48) than in Los Gigantes samples (NPQ 0.26).
  • We concluded that site‐related characteristics, and in particular different UV‐B radiation regimen, had a strong effect on resistance of the photosynthetic apparatus of P. austrosinense to UV‐B radiation.
  相似文献   

16.
UV‐induced synthesis/accumulation of photoprotective pigments and antioxidant activity were investigated in the hot‐spring cyanobacterium Leptolyngbya cf. fragilis. The results indicated that UV radiation may induce biosynthesis of carotenoids, allophycocyanin, phycoerythrin, and scytonemin while phycocyanin degrades in response to longtime UV radiation. Moreover, pigment composition of L. cf. fragilis was significantly altered with increasing UV radiation times, probably due to destruction and resynthesis of accessory pigments as an adaptation strategy to UV stress. The in vitro antioxidant analysis of different extracts of UV treated cyanobacteria exhibited concentration‐dependent antioxidant activity. Ethyl acetate extract of 72 h UV treatment showed maximum total antioxidant activity (IC50 = 71.73 ± 5.3 μg mL?1) followed by ethyl acetate control (non‐UV irradiated) extract (IC50 = 109.43 ± 2.76 μg mL?1). This is the first report for the UV‐induced synthesis of photoprotective pigments and their antioxidant activity in L. cf. fragilis.  相似文献   

17.
18.
Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet‐B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron‐deficient cyanobacteria respond to UV‐B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV‐B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV‐B radiation under iron‐deficient conditions, but were less affected under iron‐replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV‐B radiation under iron‐deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV‐B radiation under iron‐replete conditions. These results indicate that iron‐deficient cyanobacteria are more susceptible to enhanced UV‐B radiation. Therefore, UV‐B radiation probably plays an important role in influencing primary productivity in iron‐deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron‐deficient regions around the world.  相似文献   

19.
Exposure of plants to UV‐C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub‐lethal UV‐C exposure on Arabidopsis plants when irradiated with increasing dosages of UV‐C radiation. Following UV‐C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m?2 dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage‐ and time‐dependent manner. Analysis of H2O2 activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence‐related responses at each UV‐C dosage tested. Interestingly, in response to UV‐C irradiation the production of callose (β‐1,3‐glucan) was identified at all dosages examined. Together, these results show plant responses to UV‐C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV‐C as an inducer of plant defence.  相似文献   

20.
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号