首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
传粉昆虫物种多样性监测、评估和保护概述   总被引:2,自引:0,他引:2  
谢正华  徐环  杨璞 《昆虫知识》2011,48(3):746-752
欧洲和北美等国相继建立起传粉昆虫物种多样性监测和评估体系。基于传粉昆虫的监测资料,能够对欧美部分区域和某些传粉昆虫类群的现状、下降程度以及影响因素进行研究。欧洲和北美等地已开展部分传粉昆虫保护措施和项目,如欧洲部分国家实施的"农田环境计划"项目(Agri-Environmental Schemes)能够保护农田生态系统中传粉昆虫的栖境,恢复和提高传粉昆虫物种多样性。我国传粉昆虫物种多样性十分丰富,但目前还没有一个以监测和评估传粉昆虫物种多样性为主的平台,也未对某区域或某类群传粉昆虫多样性的变化进行评估,传粉昆虫多样性的保护也未引起足够重视。为了解我国传粉昆虫物种多样性现状及变化情况,作者建议在我国建立传粉昆虫物种多样性监测和评估体系,以提高我们在该领域的认识水平,并为开展相应的保护工作提供理论基础。  相似文献   

2.
昆虫传粉在维持植物的有性繁殖、物种形成及生态系统稳定中扮演着重要角色, 而野生传粉昆虫为生态系统提供了巨大的传粉服务功能。大蜜蜂(Apis dorsata)为亚洲特有的一种野生传粉昆虫, 是热带地区多种植物和农作物的有效传粉者, 在保障热带生物多样性及作物产量中有不可或缺的作用。但受全球气候变化、人类活动和生境恶化等因素的影响, 其种群数量日益减少, 开展大蜜蜂种质资源保护势在必行。本文综述了大蜜蜂筑巢、迁飞和传粉服务功能, 分析了人为猎取蜂巢, 栖息生境遭受破坏, 杀虫剂和除草剂滥用, 昆虫、螨类和病原物侵染, 气候变化等威胁种群的因素, 以期从强化大蜜蜂基础研究和保护、推动生态农业发展、建立适合大蜜蜂迁飞生态廊道、加强检验检疫及科学合理利用大蜜蜂种质资源等方面制定相应的保护措施。  相似文献   

3.
油茶是典型的异花授粉植物,其中虫媒是主要形式,所以利用野生传粉性昆虫来提高油茶授粉效率,解除花粉限制,是解决我国油茶产业"瓶颈"的有效方法之一。目前,关于油茶传粉昆虫的研究比较匮乏,仅限于传粉昆虫的种类调查和部分野生蜜蜂传粉生物学和营巢生物学特性研究,不能满足油茶产业发展的需要。在现有研究基础上,结合传粉昆虫研究发展趋势,本文将提出以下几个重要研究内容:油茶访花昆虫种类的调查和鉴定;主要传粉昆虫传粉生物学研究;优势传粉昆虫的筛选;野生传粉蜜蜂与油茶授粉间的关系;利用传粉昆虫与油茶的协同进化进行油茶品种选育。以期为油茶传粉昆虫的后续研究提供参考。  相似文献   

4.
基于服务功能的昆虫生态调控理论   总被引:2,自引:0,他引:2  
鉴于昆虫在植物传粉授精、害虫生物控制、土壤有机物分解中提供多种生态系统服务功能,本文在害虫生态调控、区域性害虫生态调控与生境管理的基础上,进一步提出基于多种生态服务功能的农田景观昆虫生态调控理论、方法与实践。认为:昆虫管理不仅仅是害虫的管理,还应包括有益昆虫(如传粉昆虫、天敌昆虫、分解昆虫)的管理,这种管理应从单一农田生态系统扩展到农田景观生态系统,充分考虑农田景观中昆虫的传粉功能、生物控害功能和分解功能,通过对功能植物、作物与非作物生境的空间布局以及时间序列上的生态设计,从空间上明确昆虫(包括害虫、天敌、传粉昆虫、分解昆虫)在不同生境中的转移扩散动态,从时间上掌握昆虫在不同寄主植物与非作物生境上的演替过程,从技术上着重发挥有利于昆虫的传粉功能、生物控害功能和分解功能的综合措施,在研究方法上突出使用稳定同位素、生态能量学、化学生态学等定量分析手段,研究景观区域内中"植物-昆虫"互作过程及其生态调控措施的作用,寻求不同时空条件下控害保益的关键措施,设计和组装出维持多功能的农田景观昆虫生态调控技术体系,创造有利于天敌控害、蜜蜂传粉、土壤分解的环境条件,以发挥昆虫类群在农田景观中最大的生态服务功能。  相似文献   

5.
王润  丁圣彦  卢训令  宋博 《生态学杂志》2016,27(7):2145-2153
农业景观中非农生物所提供的服务是生态系统保持稳定的基础,随着农业集约化程度的加强,生物多样性的持续丧失是现代农业发展最突出的表现形式之一.本文以黄河中下游典型农业区巩义市为研究区,根据其典型的地貌特征(山地-丘陵-河川)来探究地貌类型、景观和生境3种尺度上景观异质性对传粉昆虫多样性的影响.本研究使用诱捕盘法(pan traps)获取传粉昆虫,采用多因素方差分析多尺度上农业景观异质性对传粉昆虫多样性的影响.结果表明: 共捕获传粉昆虫67012头,分属7个目、86个科.其中,优势类群为食蚜蝇科、花蝇科;常见类群为果蝇科、丽蝇科、蜂虻科、头蝇科、花萤科、瘿蜂科、胡蜂科、小蜂科、切叶蜂科、蜜蜂科.地貌类型对传粉昆虫多样性的影响最为显著(P<0.001),表明丘陵和山地地区为传粉昆虫的蜜源地;其次是生境尺度(P<0.05),但景观尺度和尺度间的交互作用的影响不显著.丘陵和山地地区的景观异质性对传粉昆虫多样性的影响为本地区不同地貌类型的景观规划和生物多样性保护提供了理论支持.  相似文献   

6.
全球气候变化对生态系统的影响是人类社会面临的紧迫而又严峻的挑战。气候变化带来的极端气候事件的增多, 直接影响到生态系统生产力和服务功能。本文总结了气候变化对植物-传粉昆虫互作的研究进展, 强调植物-传粉昆虫互作网络结构和其时空演变的解析, 以及互作关系和功能性状重组研究的重要性。近年来在气温持续上升背景下对植物-传粉昆虫互作关系影响的研究也受到了更多关注, 这些研究主要集中在两方面: 一是植物和传粉昆虫分布区的变化, 包括部分种群可能灭绝; 二是物候的变化, 即植物花期和传粉昆虫活动期的改变。植物与传粉昆虫任何一方在空间或时间上的改变, 都会导致传粉关系的错配或丢失。此外, 也可能导致植物-传粉昆虫双方的功能性状及其耦合的改变, 从而影响其互作关系的稳定。建议在今后的研究中关注: (1)覆盖生物多样性的多个尺度的研究; (2)对植物-传粉者互作网络的长期监测; (3)重要指示物种繁殖适合度评价; (4)植物-传粉昆虫互作双方功能性状在时间和空间尺度上的变化, 及其互作关系的重组; (5)关键植物和传粉昆虫类群的评估和保护。  相似文献   

7.
野生蜜蜂及其传粉作用的研究现状   总被引:8,自引:0,他引:8  
传粉是维持与提升生物多样性的重要生态过程。膜翅目蜜蜂总科昆虫是自然界中最重要的传粉者, 但对野生蜜蜂的研究一直以来非常薄弱, 如野生蜜蜂类群的资源调查、种类的准确鉴别、营巢生物学与传粉生物学研究等方面。目前, 生物多样性与保护生物学方面的工作越来越多地涉及野生蜜蜂与植物的相互关系, 地方植物区系与农林作物的传粉生物学基础研究与应用项目也引起重视。本文综述了国内外野生蜜蜂的研究现状, 期望从分类学、营巢生物学与传粉生物学等方面推动野生蜜蜂传粉在农林业生产实践中的应用。  相似文献   

8.
油橄榄(Olea europaea)是一种木本油料作物,具有较高的药用价值和食用价值,昆虫授粉是其风媒授粉的一种有效补充。为了解我国油橄榄主要种植区花期传粉昆虫群落差异、结构组成及分布规律,对全国13个典型样地油橄榄花期传粉昆虫进行调查与采集,采用物种优势度及多样性等指数对传粉昆虫的群落结构及多样性进行分析,通过计算不同样地物种组成相似程度以量化传粉昆虫群落相似性。2020—2021年在全国油橄榄种植区共采集并鉴定出 3目 13科25属37种564只昆虫,优势度分析显示油橄榄优势传粉类群以蜜蜂科(Apidae)、食蚜蝇科(Syrphidae)或蜜蜂科、隧蜂科(Halictidae)两种组合常见;多样性分析显示重庆市万州区样地传粉昆虫多样性最高,西昌市海滨中路样地最低。群落相似性分析结果显示陇南市所属样地被聚为一簇;凉山州冕宁县样地、绵阳市松垭镇样地、重庆市奉节县样地、重庆市合川区样地的四个样地和西昌市南宁区样地、绵阳市三台县样地、重庆市万州区样地的3个样地分别被聚为一簇。因此,优势类群中的中华蜜蜂(Apis cerana cerana)、意大利蜜蜂(Apis mellifera ligustica)和灰带管蚜蝇(Eristalis cerealis)等传粉昆虫可应用于油橄榄传粉服务,同时为保证油橄榄传粉昆虫多样性及传粉效果,应避免不合理的人为干扰和生境破坏。基于传粉昆虫多样性和群落相似度调查,重庆市万州区样地的自然背景可为传粉昆虫适生生境改造提供参考,并建议将西昌市海滨中路样地列为重点保护对象。中华蜜蜂、意大利蜜蜂和灰带管蚜蝇等优势传粉昆虫将有效应对油橄榄花粉资源限制问题,后续油橄榄人工林的改造应着重考虑人为干扰和生境破坏对传粉昆虫的影响,而传粉昆虫对油橄榄座果率及产量提升的贡献可基于本研究展开进一步探索。综上所述,本研究初步探明我国油橄榄传粉昆虫群落结构特征及多样性,为利用昆虫辅助授粉解决油橄榄坐果率低下的问题提供新的视角。  相似文献   

9.
传粉网络是植物和传粉者之间形成的网状相互作用关系, 为理解群落物种多样性形成与维持机制提供了全新的视角。湿地是典型的群落交错区, 环境异质性与物种多样性都很高, 传粉网络可能比草地和森林等生态系统具有更复杂的结构。该研究针对海南岛海口市南郊的羊山湿地, 比较4个样地在旱季(5月)与雨季(8月)的传粉网络及其动态变化, 揭示湿地生态系统的传粉网络结构特征以及在干湿季的变化规律。结果表明, 羊山湿地传粉网络共有71种开花的植物, 131种传粉者, 传粉网络呈现低连接度、高嵌套度、中等网络特化程度的结构特征。在季节动态方面, 4个样地旱季的植物与传粉者种类高于雨季; 而传粉网络的连接度、嵌套度与网络特化程度没有明显的季节差异。白花鬼针草和水角等多个物种可同时在雨季和旱季开花, 使得植物-传粉者的种间关系虽然存在季节变化, 但传粉网络在旱季与雨季间的动态变化不大。总体而言, 羊山湿地物种多样性较高, 边缘效应较明显, 传粉网络结构较稳定。  相似文献   

10.
不同类型的林地为人类提供着十分重要的生态系统服务,维持着社会的稳定发展,其对传粉昆虫的保护也有着积极的效应。在巩义市选取24个采样点,3种林地类型(栓皮栎林、泡桐林、杨树林)进行取样,结合当地的植物群落特征,分析不同人为干扰梯度下生态系统对传粉昆虫的影响;共捕获传粉昆虫8386头,分属6个目,83个科,分属于膜翅目类、双翅目类、鞘翅目类、鳞翅目类、半翅目类与缨翅目类共六个传粉功能群。选取膜翅目、双翅目、鞘翅目和鳞翅目4类主要传粉昆虫作为研究对象进行分析。结果表明:(1)栓皮栎林中传粉昆虫的个体数量和优势度要大于泡桐林和杨树林,但泡桐林中传粉昆虫多样性大于栓皮栎林和杨树林;就传粉昆虫的多度而言,栓皮栎林与泡桐林(P0.05)和杨树林(P0.01)间有显著差异,而泡桐林和杨树林间的差异不明显;(2)非度量多维度法(NMDS)和非参数二因子相似性分析(ANOSIM)显示,泡桐林中传粉昆虫群落组成分别与栓皮栎林和杨树林之间存在显著差异(P0.05),而栓皮栎林与杨树林间无显著差异;(3)在所研究的7个环境因子中,根据冗余分析(RDA)显示,海拔高度和乔木盖度2个环境因素对传粉昆虫群落组成有显著影响(P0.05)。不同林地类型中传粉昆虫群落的组成差异明显,生境和植被的多样为物种带来更多的食源及栖息环境,因此,加强不同林地类型的保护、保障传粉昆虫生境的多样性对本区传粉昆虫的发展和生态系统服务的提高具有重要意义。  相似文献   

11.
Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes. Functional redundancy is calculated as the species richness within each group, and response diversity as the multivariate within-group dispersion in response trait space, using traits that influence responses to disturbances. Meta-analysis across all datasets showed that land-use intensification significantly reduced both functional redundancy and response diversity, although specific relationships varied considerably among the different land-use gradients. These results indicate that intensified management of ecosystems for resource extraction can increase their vulnerability to future disturbances.
Ecology Letters (2010) 13: 76–86  相似文献   

12.
Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.  相似文献   

13.
Inter‐annual turnover in community composition can affect the richness and functioning of ecological communities. If incoming and outgoing species do not interact with the same partners, ecological functions such as pollination may be disrupted. Here, we explore the extent to which turnover affects species’ roles – as defined based on their participation in different motifs positions – in a series of temporally replicated plant–pollinator networks from high‐Arctic Zackenberg, Greenland. We observed substantial turnover in the plant and pollinator assemblages, combined with significant variation in species’ roles between networks. Variation in the roles of plants and pollinators tended to increase with the amount of community turnover, although a negative interaction between turnover in the plant and pollinator assemblages complicated this trend for the roles of pollinators. This suggests that increasing turnover in the future will result in changes to the roles of plants and likely those of pollinators. These changing roles may in turn affect the functioning or stability of this pollination network.  相似文献   

14.
Understanding the causes and consequences of pollinator declines is a priority in ecological research. However, across much of the globe we have a poor understanding of pollinator assemblages, population trends and the ecological and economic importance of particular pollinators, due to a marked geographic bias in research effort. Here, we show that almost half the data cited in thirteen recent meta‐analyses, which ask important and diverse questions in pollination ecology, were collected in just five countries: Australia, Brazil, Germany, Spain and the USA. In contrast, the entire continent of Africa contributed only 4% of the data. We believe that the consequences of this geographic bias are severe. Foremost, pollinator assemblages (and possibly their sensitivity to ecological drivers) can greatly vary among these regions. In addition, many communities that rely on pollinators, bees in particular, for food security and wealth generation are in geographic regions where our understanding of pollination is poor. Collecting accurate information on pollinator populations in data deficient areas will allow us to identify vulnerable populations and species and so better target conservation measures. Moreover, it will help us to determine if our current understanding of pollinator losses, based on data collected in a few locations and on the species that predominate in those regions, is representative of the wide diversity of ecosystems. We propose means of collecting such data given socioeconomic constraints.  相似文献   

15.
Worldwide, human appropriation of ecosystems is disrupting plant–pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi‐natural ecosystems while conventional land‐use intensification (e.g. industrial management of large‐scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm‐level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice.  相似文献   

16.
Fire has a major impact on the structure and function of many ecosystems globally. Pyrodiversity, the diversity of fires within a region (where diversity is based on fire characteristics such as extent, severity, and frequency), has been hypothesized to promote biodiversity, but changing climate and land management practices have eroded pyrodiversity. To assess whether changes in pyrodiversity will have impacts on ecological communities, we must first understand the mechanisms that might enable pyrodiversity to sustain biodiversity, and how such changes might interact with other disturbances such as drought. Focusing on plant–pollinator communities in mixed‐conifer forest with frequent fire in Yosemite National Park, California, we examine how pyrodiversity, combined with drought intensity, influences those communities. We find that pyrodiversity is positively related to the richness of the pollinators, flowering plants, and plant–pollinator interactions. On average, a 5% increase in pyrodiversity led to the gain of approximately one pollinator and one flowering plant species and nearly two interactions. We also find that a diversity of fire characteristics contributes to the spatial heterogeneity (β‐diversity) of plant and pollinator communities. Lastly, we find evidence that fire diversity buffers pollinator communities against the effects of drought‐induced floral resource scarcity. Fire diversity is thus important for the maintenance of flowering plant and pollinator diversity and predicted shifts in fire regimes to include less pyrodiversity compounded with increasing drought occurrence will negatively influence the richness of these communities in this and other forested ecosystems. In addition, lower heterogeneity of fire severity may act to reduce spatial turnover of plant–pollinator communities. The heterogeneity of community composition is a primary determinant of the total species diversity present in a landscape, and thus, lower pyrodiversity may negatively affect the richness of plant–pollinator communities across large spatial scales.  相似文献   

17.
Coastal communities are under threat from many and often co‐occurring local (e.g., pollution, eutrophication) and global stressors (e.g., climate change), yet understanding the interactive and cumulative impacts of multiple stressors in ecosystem function is far from being accomplished. Ecological redundancy may be key for ecosystem resilience, but there are still many gaps in our understanding of interspecific differences within a functional group, particularly regarding response diversity, that is, whether members of a functional group respond equally or differently to anthropogenic stressors. Herbivores are critical in determining plant community structure and the transfer of energy up the food web. Human disturbances may alter the ecological role of herbivory by modifying the defense strategies of plants and thus the feeding patterns and performance of herbivores. We conducted a suite of experiments to examine the independent and interactive effects of anthropogenic (nutrient and CO2 additions) and natural (simulated herbivory) disturbances on a seagrass and its interaction with two common generalist consumers to understand how multiple disturbances can impact both a foundation species and a key ecological function (herbivory) and to assess the potential existence of response diversity to anthropogenic and natural changes in these systems. While all three disturbances modified seagrass defense traits, there were contrasting responses of herbivores to such plant changes. Both CO2 and nutrient additions influenced herbivore feeding behavior, yet while sea urchins preferred nutrient‐enriched seagrass tissue (regardless of other experimental treatments), isopods were deterred by these same plant tissues. In contrast, carbon enrichment deterred sea urchins and attracted isopods, while simulated herbivory only influenced isopod feeding choice. These contrasting responses of herbivores to disturbance‐induced changes in seagrass help to better understand the ecological functioning of seagrass ecosystems in the face of human disturbances and may have important implications regarding the resilience and conservation of these threatened ecosystems.  相似文献   

18.
Rainfall and herbivory shape savannah herbaceous communities, but these disturbances are being altered globally. To assess potential consequences of such alterations, we evaluated herbivore effects on species and functional diversity during an episodic drought in a sodic savannah using data collected from long-term herbivore exclosures in the Kruger National Park, South Africa. Herbaceous life forms are rarely acknowledged as distinct functional entities. Moreover, the functional ecology of forbs remains elusive. Here, we present disturbances–responses by forbs separately from grasses. We hypothesised that combinations of intense utilisation and drought would be associated with low diversity and high dominance at species and functional levels for both life forms. Contrary to our hypothesis, low forb and grass diversity was associated with long-term herbivore exclusion, which exceeded expected undesirable effects of intense utilisation and drought. Grasses responded less sensitively, suggesting that forbs respond dynamically to changes in herbivore assemblage when these alterations are combined with drought. Consistent with patterns in savannah systems, forbs contributed significantly to species and functional trait diversity. High forb diversity is suggested to enhance resilience of this nutrient-rich ecosystem against declines in its functioning when subjected to drought and alterations in herbivory.  相似文献   

19.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

20.
Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号