首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
微系统技术在细胞生物学方面的研究中已得到广泛应用。了解细胞在微系统芯片内的生长状态,对于利用微系统技术进行细胞研究有重要的指导意义。玻璃和聚二甲基硅氧烷(polydimethylsiloxane,PDMS)是目前制作细胞培养微芯片的主要材料。通过向以二者为基底材料制作的细胞培养微芯片内导入内皮细胞进行培养,利用实验室构建的细胞成像分析系统观察和分析细胞在不同基底材料的芯片内5天的增殖情况,同时研究了基底材料的预处理方法以及培养基对细胞增殖的影响。  相似文献   

2.
细胞微系统技术研究是目前细胞生物学、微系统科学及药物筛选等学科交叉领域的一个研究热点,其综合利用了微系统平台技术,将细胞的培养、观测和分析在微系统平台上完成,丰富了细胞研究方法,为细胞研究提供了一个全新的研究平台。现对目前细胞微系统研究中几种典型的方法,如立体微结构模型、软光刻、微流体、芯片毛细管电泳、微电极等进行综述,并阐述其在细胞生物学、生命科学等领域相关研究中的应用。  相似文献   

3.
微系统技术给细胞研究提供了一个全新的平台。细胞图形化(Cell Patterning)技术作为全新的细胞培养方式,在细胞研究中发挥重要作用。本文介绍了目前应用于细胞图形化的主要技术,包括光刻(Photolithography)、软光刻(Soft lithography)、模板辅助(Stencil-assisted patterning)等方法,并阐述了利用细胞图形化技术的在基础生物学、组织工程以及基于细胞的生物传感器等方面的主要应用。  相似文献   

4.
温度是生物体中重要的参数,准确测量细胞在代谢过程中的温度波动可为更深入地探究细胞的能量产生和扩散过程提供有价值的信息,从而促进癌症和其他疾病的研究. 本文基于微机电加工和微流控技术制备一批可在微环境下监测细胞代谢过程中温度波动的微芯片. 微芯片由捕获细胞的C形“微坝”结构、供液体流动的“微缝”和监测温度波动的电极结构组成. 可将细胞培养、温度监测在微芯片上完成. 将有细胞贴壁生长的微芯片放置在37℃恒温环境中,采用恒电流法实时在线连续监测细胞在代谢过程中的温度波动. 该芯片共有9个检测单元,每个单元的检测都是完全独立的,可同时检测多个结构上的细胞温度波动情况. 微芯片的准确度优于0.013℃,精度为±0.014℃,响应速度约0.1 s,不同厚度Ti/Pt温度传感器的温度-电阻之间的线性拟合参数R2大于0.999. 在(37±0.015)℃的恒温环境下监测细胞,发现人肺腺癌细胞系(human lung adenocarcinoma cell,H1975)在代谢过程中温度波动的极差(0.173℃)大于肝星状细胞(hepatic stellate cell,HSC)的极差(0.127℃). 癌细胞H1975的平均温度(37.001℃)高于正常细胞HSC的平均温度(36.989℃). 该芯片为细胞代谢监测、药物筛选等方面提供了新的研究平台.  相似文献   

5.
用于药物筛选的微流控细胞阵列芯片   总被引:1,自引:0,他引:1  
细胞区域分布培养以及如何有效地对微流体进行操控是微流控阵列芯片在细胞药物研究中的关键技术。本研究介绍了一种利用SU-8负性光刻胶模具和PDMS制作双层结构的微流控细胞阵列芯片的方法,该芯片通过C型的坝结构将进样细胞拦截在芯片的细胞培养的固定区域,键合双层PDMS构成阀控制层,阀网络的开关作用成功实现了芯片通道内微流体的操控,同时芯片设计了药物浓度梯度网络,产生6个不同浓度的药物刺激细胞。通过对芯片3种共培养细胞活性的检测和药物伊立替康(CTP-11)对肝癌细胞的浓度梯度刺激等实验结果验证该芯片在细胞研究和药物筛选等方面的可行性。  相似文献   

6.
液滴微流控技术在微纳米尺度上对多种流体的流动进行精确控制,从而能够以高通量的方式生成结构可调和成分可控的微纳米液滴。通过结合合适的水凝胶材料和制造方法,可以将单个或多个细胞高效地封装进水凝胶中,制备细胞凝胶微球。细胞凝胶微球可以为细胞的增殖、分化等提供一个三维的、相对独立可控的微环境,在三维细胞培养、组织工程与再生医学、干细胞研究和单细胞研究等生命科学领域具有重要价值。本文主要综述了基于液滴微流控技术的细胞凝胶微球的制备及其在生物医学领域的应用,并对未来的研究工作提出了展望。  相似文献   

7.
聚合酶链式反应(PCR)微芯片是基于微机电系统(MEMS)制作,在微芯片上进行PCR反应,实现生物样品扩增的一项新技术.介绍了硅-玻璃PCR微芯片的设计和制作、微反应腔的清洗和表面处理、借助外置温度控制系统进行PCR扩增反应以及扩增产物在琼脂糖凝胶电泳下的检测分析,实现了对β-葡糖苷酸酶(GUS)基因的有效扩增,扩增时间由原来的90 min缩短到现在的37 min.  相似文献   

8.
基于玻璃基底的细胞培养芯片研究   总被引:2,自引:0,他引:2  
目的:为了对细胞进行长期观察和培养,研究细胞培养芯片的制作以及其与温度控制装置、进样系统、信号检测系统等的整合。方法:以商品化的氧化铟锡(ITO)透明导电玻璃为芯片加工的基质材料,利用光刻胶AZ4620作为玻璃湿法刻蚀的掩模层,并应用玻璃湿法刻蚀过程中的钻蚀效应,快速、低成本地加工细胞培养芯片;将此芯片与聚二甲基硅氧烷(PDMS)薄膜经氧等离子体作用后共价结合,整合温度控制系统、进样系统、信号检测系统等。结果:获得了可用于细胞培养的微系统,实现了对猪髂骨动脉内皮细胞(PIEC)在芯片内至少3d的观察和培养。结论:制备的芯片能够用于细胞的长期观察和培养,为研究细胞迁移特性等提供了有效工具。  相似文献   

9.
细胞激光微操作系统   总被引:2,自引:0,他引:2  
光镊的发明使得对单细胞的操作成为现实,利用耦合光刀与光镊,建立“细胞激光微操作系统”,可为研究细胞这一特殊的生命形式提供一种切实可行的手段。本文介绍“细胞激光微操作系统”的设计思想和工作原理,以及系统各部分组成及其功能,讨论了系统的特点、性能、应用范围和初步生物学应用研究,并与国际上同类产品的相关功能进行了比较。  相似文献   

10.
乳腺癌是女性最常见的癌症,目前乳腺癌的研究主要借助体内模型和传统细胞培养方法,然而研究表明,由于人类和动物之间固有的物种差异,以及器官和细胞之间组织结构的差异,使用上述两种研究方法研制出的药物,在临床试验中失败率高达90%,因此,类器官三维培养应运而生。类器官是一种具有空间结构的三维细胞复合体,它作为一种新的肿瘤研究模型,在精准医疗、器官移植、建立难治疾病模型、基因治疗和药物研发等方向具有广阔的应用前景,是未来生命科学研究的理想载体之一。乳腺癌作为一种表型复杂的异质性疾病,其患者生存率较低,而乳腺癌类器官可以重现人类乳腺癌的许多关键特征,故构建乳腺癌类器官生物库,将会为研究乳腺癌的发生、发展、转移和耐药机制提供一个新的平台。文中将系统介绍类器官的培养条件及其在乳腺癌相关研究中的应用,并对类器官的应用前景进行展望。  相似文献   

11.
Current developments in tissue engineering and microtechnology fields have allowed the proposal of pertinent tools, microchips, to investigate in vitro toxicity. In the framework of the proposed REACH European directive and the 3R recommendations, the purpose of these microtools is to mimic organs in vitro to refine in vitro culture models and to ultimately reduce animal testing. The microchip consists of functional living cell microchambers interconnected by a microfluidic network that allows continuous cell feeding and waste removal controls by fluid microflow. To validate this approach, Madin Darby Canine Kidney (MDCK) cells were cultivated inside a polydimethylsiloxane microchip. To assess the cell proliferation and feeding, the number of inoculated cells varied from 5 to 10 x 10(5) cells/microchip (corresponding roughly to 2.5 to 5 x 10(5) cells/cm2) and from four flow rates 0, 10, 25, and 50 microL/min were tested. Morphological observations have shown successful cell attachment and proliferation inside the microchips. The best flow rate appears to be 10 microL/min with which the cell population was multiplied by about 2.2 +/- 0.1 after 4 days of culture, including 3 days of perfusion (in comparison to 1.7 +/- 0.2 at 25 microL/min). At 10 microL/min flow rate, maximal cell population reached about 2.1 +/- 0.2 x 10(6) (corresponding to 7 +/- 0.7 x 10(7) cells/cm(3)). The viability, assessed by trypan blue and lactate deshydrogenase measurements, was found to be above 90% in all experiments. At 10 microL/min, glucose monitoring indicated a cell consumption of 16 +/- 2 microg/h/10(6) cells, whereas the glutamine metabolism was demonstrated with the production of NH3 by the cells about 0.8 +/- 0.4 micromol/day/10(6) cells. Augmentation of the flow rate appeared to increase the glucose consumption and the NH3 production by about 1.5- to 2-fold, in agreement with the tendencies reported in the literature. As a basic chronic toxicity assessment in the microchips, 5 mM and 10 mM ammonium chloride loadings, supplemented in the culture media, at 0, 10, and 25 micaroL/min flow rates were performed. At 10 microL/min, a reduction of 35% of the growth ratio with 5 mM and of 50% at 10 mM was found, whereas at 25 microL/min, a reduction of 10% with 5 mM and of 30% at 10 mM was obtained. Ammonium chloride contributed to increase the glucose consumption and to reduce the NH3 production. The microchip advantages, high surface/volume ratio, and dynamic loadings, coupled with the concordance between the present and literature results dealing with ammonia/ammonium effects on MDCK illustrate the potential of our microchip for wider in vitro chronic toxicity investigations.  相似文献   

12.
This article reports a pressure-driven perfusion culture chip developed for parallel drug cytotoxicity assay. The device is composed of an 8 x 5 array of cell culture microchambers with independent perfusion microchannels. It is equipped with a simple interface for convenient access by a micropipette and connection to an external pressure source, which enables easy operation without special training. The unique microchamber structure was carefully designed with consideration of hydrodynamic parameters and was fabricated out of a polydimethylsiloxane by using multilayer photolithography and replica molding. The microchamber structure enables uniform cell loading and perfusion culture without cross-contamination between neighboring microchambers. A parallel cytotoxicity assay was successfully carried out in the 8 x 5 microchamber array to analyze the cytotoxic effects of seven anticancer drugs. The pressure-driven perfusion culture chip, with its simple interface and well-designed microfluidic network, will likely become an advantageous platform for future high-throughput drug screening by microchip.  相似文献   

13.
A method of alginate-based hydrogel cell microchip manufacturing is proposed. The development of mild conditions for cell immobilization in microvolumes of non-toxic alginate gel allows extending the range of microorganisms used. Different approaches to cell analysis using microchip have been approved in pilot studies. By the example of Escherichia coli, Bordetella bronchiseptica and Saccharomyces cerevisiae it is shown that cell microchip can be successfully applied for monitoring of nucleic acid and protein synthesis in growing cells simultaneously using two fluorescent dyes. The influence of chloramphenicol on the nucleic acids and protein synthesis in five bacterial strains has been studied on the microchip. The microchip was also applied for the analysis of inducible fluorescent protein EGFP synthesis in E. coli cells, the correlation between the level of EGFP synthesis and concentration of the inductor in the medium has been established.  相似文献   

14.
The application of microchip capillary electrophoresis (CE) to the assay of extracellular signal-regulated protein kinase (ERK) is presented. In this assay, ERK catalyzes the transfer of gamma-phosphate from adenosine 5(')-triphosphate to the threonine residue of a fluorescently labeled nonapeptide (APRTPGGRR), and the phosphorylated and nonphosphorylated peptides were detected by fluorescence. The phosphorylated and nonphosphorylated peptides and the internal standard were separated within 20s, and the increase in magnitude of the phosphorylated peptide peak was monitored to assess ERK activity. ERK reactions were prepared off-chip and analyzed on a single-lane glass microchip fabricated by standard methods. It was demonstrated that microchip CE could be used to measure endogenous amounts of ERK by spiking known concentrations of recombinant ERK2 into the lysates of serum-starved human umbilical vein endothelial cells (HUVEC) and recovering between 90 and 100% for all samples. Endogenous ERK activity was determined by microchip where HUVEC were stimulated with 500pM vascular endothelial growth factor (VEGF) at different times before cell lysis. The results showed a transient VEGF-mediated ERK activation that peaked at 10min, which was consistent with previous reports using conventional techniques. The microchip assay provided a rapid, accurate, and precise alternative to conventional methods of determining endogenous ERK activity.  相似文献   

15.
Mammalian cell attachment studies were conducted on a variety of common microchip surfaces for potential use in cell based biosensors. COS-7 cell attachment to Au, Pt or ITO, per unit area was greater than to SiO(2) surfaces. The number of cells that would attach was essentially maximized 3 h after cell seeding. HL-1 cells attached more readily to surfaces precoated with fibronectin, but by 3 h equivalent number of cells had attached independent of fibronectin precoating. Inclusion of serum in media during the initial period of attachment decreased the number of COS-7 cells attached to SiO(2) surfaces, but no dependence on serum was seen for ITO surfaces. The number of cells attached per unit area varied with the composition of the surface. However, no differences were observed in the percentage of cells transfected with a green fluorescent protein gene, or in the level of reporter gene expression over the population of transfected cells on ITO, SiO(2), Pt, Ag, or Au surfaces. Similar FACS analysis of transfected Hep G2 cells revealed lower levels of both transfection efficiency and levels of GFP fluorescence. Hep G2 cells plated on Ag did not remain attached for analysis, but there were no significant differences between tissue culture plastic and the other biosensor surfaces in the percentage of cells transfected. This suggests that, in general, cells will attach to the various conducting and nonconducting biosensor surfaces studied and will provide comparable data in reporter gene expression assays.  相似文献   

16.
Liu D  Wang L  Zhong R  Li B  Ye N  Liu X  Lin B 《Journal of biotechnology》2007,131(3):286-292
A microfluidic chip featuring parallel gradient-generating networks etched on glass plate was designed and fabricated. The dam and weir structures were fabricated to facilitate cell positioning and seeding, respectively. The microchip contains five gradient generators and 30 cell chambers where the resulted concentration gradients of drugs are delivered to stimulate the on-chip cultured cells. This microfluidics exploits the advantage of lab-on-a-chip technology by integrating the generation of drug concentration gradients and a series of cell operations including seeding, culture, stimulation and staining into a chip. Steady parallel concentration gradients were generated by flowing two fluids in each network. The microchip described above was applied in studying the role of reduced glutathione (GSH) in MCF-7 cells' chemotherapy sensitivity. The parental breast cancer cell line, MCF-7 and the derived adriamycin resistant cell line MCF-7(adm) were treated with concentration gradients of arsenic trioxide (ATO) and N-acetyl cysteine (NAC) for GSH modulation, followed by exposure to adriamycin. The intracellular GSH level and cell viability were assessed by fluorescence image analysis. GSH levels of both cell lines were down-regulated upon ATO treatment and up-regulated upon NAC treatment. For both cell lines, suppression of intracellular GSH by treatment with ATO has been shown to increase chemotherapy sensitivity; conversely, elevation of intracellular GSH by treatment with NAC leads to increased drug resistance. The results indicated that high intracellular GSH level has negative effect on chemotherapy sensitivity, while depletion of cellular GSH may serve as an effective way to improve chemotherapy sensitivity. The integrated microfluidic chip is able to perform multiparametric pharmacological profiling with easy operation, thus, holds great potential for extrapolation to the high-content drug screening.  相似文献   

17.
A sensitive and selective analytical method for the determination and quantification of endogenous β-galactosidase in crude E. coli cell lysates by immunoprecipitation combined with automated microchip capillary gel electrophoresis (IP-MCGE) with laser-induced fluorescence (LIF) detection was developed. Total cell lysates were derivatized minimally with a fluorescence dye, incubated with anti-β-galactosidase antibodies, and the antigen/antibody complex was precipitated with protein G-coated magnetic beads. After capturing the complex, it was eluted from the beads under denaturing conditions and loaded directly onto a multisample microchip for analysis. The effects of antibody selection and the importance of preclearing steps were studied in detail. For quantification, an external calibration through spiking pure β-galactosidase into E. coli lysate was performed. Recovery rates of immunoprecipitation after spiking experiments and the amount of unknown endogenous β-galactosidase in E. coli lysates were determined. As proof of principle, E. coli cultures grown on nutrition media with several glucose/lactose ratios were analyzed. Differences in the expression level of β-galactosidase could be detected and measured with the developed method. Detected amounts of β-galactosidase in different culture media correlated with the β-galactosidase activities in these cultures.  相似文献   

18.
Negative dielectrophoretic (n-DEP) cell manipulation is an efficient way to pattern human liver cells on micro-electrode arrays. Maintaining cell viability is an important objective for this approach. This study investigates the effect of low conductivity medium and the optimally designed microchip on cell viability and cell adhesion. To explore the influence of conductivity on cell viability and cell adhesion, we have used earlier reported dielectrophoresis (DEP) buffer with a conductivity of 10.2 mS/m and three formulated media with conductivity of 9.02 (M1), 8.14 (M2), 9.55 (M3) mS/m. The earlier reported isotonic sucrose/dextrose buffer (DEP buffer) used for DEP manipulation has the drawback of poor cell adhesion and cell viability. A microchip prototype with well-defined positioning of titanium electrode arrays was designed and fabricated on a glass substrate. The gap between the radial electrodes was accurately determined to achieve good cell patterning performance. Parameters such as dimension of positioning electrode, amplitude, and frequency of voltage signal were investigated to optimize the performance of the microchip.  相似文献   

19.
Yasuda K  Okano K  Ishiwata S 《BioTechniques》2000,28(5):1006-1011
High-throughput, selective extraction of a particular DNA fragment from a mixture of DNA before PCR amplification is becoming increasingly important in the DNA analysis field. Although the latest microchip technology has enabled real-time DNA expression analysis using hybridization between surface-bound probe DNA and sample DNA, the potential of this technology in purification of a small amount of DNA has not been demonstrated. We report here a method for area-selective release and collection of specific DNA, in which an IR laser beam is focused onto surface-bound sample DNA at the target-spotted area to denature hybridized DNA. First, sample DNA labeled with a fluorescent dye was hybridized to a probe DNA immobilized on a chromium-coated chip. A 1053-nm IR laser beam with an intensity of 10-100 mW was then focused on the target area with a spatial resolution of 10 microns, causing the release of the fluorophore-labeled sample DNA as a result of photo-thermal denaturation. Confirmation of the amount of eluted DNA by PCR amplification after collection indicated that more than 10(-20) mol DNA/micron 2 area was eluted from the microchip, representing more than 70% of the chip-bound sample DNA. These results indicate that this method can be applied to the highly sensitive purification of DNA in microchip technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号