首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
几种离子液体的微波法合成及其对脂肪酶催化效果的影响   总被引:1,自引:0,他引:1  
采用微波法合成9种目标离子液体,对中间体[Bmim]Br的合成条件及其离子液体对全细胞催化剂催化效果的影响进行考察.直接将产脂肪酶真菌粗状假丝酵母(Candida valida) T2细胞固定在聚氨酯颗粒中,制备固定化细胞催化剂,将其应用于合成离子液体介质中催化甲醇与大豆油酯交换反应制备生物柴油.结果表明:微波功率200 W下间隙照射100 s,中间体[Bmim]Br的收率达95.16%,有效地提高了离子液合成产率;在[Bmim]PF6离子液中固定化细胞酶催化转酯化反应30 h,大豆油的转化率达42%,反应效果较其他8种合成离子液体好;固定化细胞颗粒和[Bmim]PF6重复使用4次,其油脂转化率和酶活保持率分别达到29%和69%,表现出较好的催化反应稳定性.  相似文献   

2.
固定化脂肪酶催化毛棉籽油制备生物柴油   总被引:3,自引:1,他引:3  
研究了固定化脂肪酶Lipozyme TL IM和Novozym435催化毛棉籽油和乙酸甲酯制备生物柴油的过程。通过向反应体系中添加甲醇,可减少乙酸的抑制,明显提高生物柴油得率,确定最佳反应条件为:正己烷作溶剂,乙酸甲酯与油摩尔比9:1,添加油重3%的甲醇、油重10%的LipozymeTLIM和5%的Novozym435复合使用,温度55°C,反应8h,生物柴油得率达到91.83%。最后探索了酶催化毛棉籽油合成生物柴油的动力学,得到动力学方程。  相似文献   

3.
脂肪酶催化合成生物柴油的瓶颈问题及其对策研究进展   总被引:3,自引:0,他引:3  
生物柴油,一种新型的清洁能源燃料,具有可再生、可生物降解、环境友好等优良的品性,可部分或全部替代石化柴油。碱催化法、脂肪酶催化法及超临界法是合成生物柴油的主要工艺,其中脂肪酶催化法是一种节能型、环保型工艺,在节能和环保方面,有着碱催化法无可比拟的优越性,具有良好的工业应用前景。但目前在实现产业化的进程中仍存在如酶成本高、稳定性较差、甲醇对酶的失活效应及反应时间长等瓶颈问题。通过固定化技术和全细胞催化剂的采用、甲醇流加方式的改进、溶剂工程的改善及酰基受体和耐醇酶的开发等技术手段,结合固定床生物反应器,较好地解决了这些瓶颈问题,从而推进了酶催化法合成生物柴油的工业化进程。本文主要对酶法合成生物柴油工艺存在的主要问题及相应对策研究进展进行概括介绍,并对其工业化发展前景进行讨论。  相似文献   

4.
柯为 《生物工程学报》2006,22(3):498-498
生物柴油实际上就是生物油脂与甲醇或乙醇在酸、碱催化剂的作用下进行脂交换反应而制造的脂肪酸甲酯或乙酯;也可以在常温下由微生物脂酶催化进行酯化反应,其产品是一种可再生燃料,能替代石油柴油。这些生物柴油主要来自植物油或其它生物油脂,也有用废弃食用油为原料通过甲醇的酯交换反应来制造生物柴油的。研发这些生物柴油也可以说是节能的一项重要措施。在我国,对石油的需求量越来越大,石油进口量也随之猛增,显示出我国的能源形势日益严峻。面对这种情况,发展可再生能源或替代能源是个必然趋势,生物柴油便是其中之一。目前我国生物柴油的…  相似文献   

5.
研究了不同因素对制备固定化荧光假单胞菌脂肪酶的影响及固定化酶的酶学性质,并初步探讨了利用该固定化酶制备生物柴油的工艺。以海藻酸钠明胶为复合载体,采用包埋法制备固定化荧光假单胞菌脂肪酶,考察了载酶量、颗粒直径等因子对固定化效果的影响,并用制备的固定化酶进行了酶促酯交换合成生物柴油的工艺研究,考察了反应条件如酶量、反应温度、甲醇流加方式、醇油比等因素对甲酯得率的影响。试验结果表明,制备固定化荧光假单胞菌脂肪酶的最优条件为:每克载体给酶量为300 IU,选用6号注射器针头(内径为0.5 mm);通过酯交换,催化大豆油合成生物柴油的最佳反应工艺参数为:固定化酶25%,醇油比4:1,含水量6%,反应温度40℃;此条件下反应35 h后,甲酯的最高得率可达82%。  相似文献   

6.
固定化脂肪酶性质及其应用研究   总被引:8,自引:0,他引:8  
利用以四甲氧基硅烷(TMOS)和甲基三甲氧基硅烷(MTMS)为前驱体的溶胶-凝胶法(sol-gel)固定洋葱假单胞菌属脂肪酶,考查了固定化酶和游离酶的酶学性质及催化不同油脂酯交换合成生物柴油的情况。结果表明,80℃以下固定化酶能保持80%以上的酶活,而游离酶在50℃以后活力急剧下降,到80℃残余酶活约为10%;固定化酶在体积分数50%的甲醇中处理48 h能保持85%的酶活,在体积分数90%的乙醇中处理48h能保持31%的酶活,而游离酶残余酶活只有69%和0;在酯交换反应中固定化酶的催化效率比游离酶高10%~20%,且固定化酶重复使用11次后仍能保持60%的酶活。结果显示,酶经过固定化后稳定性和催化活性显著提高。  相似文献   

7.
超临界甲醇酯交换法制备生物柴油研究进展   总被引:5,自引:0,他引:5  
超临界甲醇法制备生物柴油是动、植物油脂与超临界甲醇发生酯交换反应生成脂肪酸甲酯的工艺。与传统的酸、碱催化法以及酶催化法等技术相比,超临界酯交换反应具有不需要催化剂、反应速度快、产物分离简单等突出特点。缺点在于反应温度和压力条件不够温和,对设备要求较高,操作费用可观。如何从系统工程的角度发挥其优点、克服缺点,则是未来该项技术能否实现工业化应用的关键。回顾了该技术的研究进展,重点对过程的影响因素进行了分析讨论。  相似文献   

8.
华根霉脂肪酶有机相合成酶活的研究   总被引:3,自引:0,他引:3  
通过比较7种微生物脂肪酶的有机相合成酶活、水相水解酶活及在正庚烷中催化己酸乙酯合成的能力,证明了合成酶活与水解酶活相关性不高,合成酶活比水解酶活更能反映脂肪酶的合成能力。通过比较两株华根霉(Rhizopus chinensis)脂肪酶酶活,发现合成酶活相差较大,表明相同种属微生物的脂肪酶合成酶活存在不同。对.Rhizopus chinensis-2液态发酵产脂肪酶进程研究发现,水解酶活高峰先于合成酶活高峰大约12h。将不同培养时间的Rhizopus chinensis-2全细胞脂肪酶用于催化己酸乙酯合成,具有高合成酶活的全细胞脂肪酶催化己酸乙酯合成反应较快。因此,全细胞脂肪酶用于催化有机相酯合成反应时,具有高脂肪酶合成酶活的菌体具有较好的催化酯合成能力。  相似文献   

9.
脂肪酶催化合成生物柴油的研究进展   总被引:3,自引:0,他引:3  
环保型燃料生物柴油有望解决能源短缺的问题,脂肪酶催化动植物油脂合成生物柴油的方法具有反应条件温和、产物易分离和不污染环境等优点。综述了酶催化法在提高脂肪酸酯产率和减少生产成本等方面的研究进展。  相似文献   

10.
脂肪酶催化合成生物柴油的研究   总被引:78,自引:0,他引:78  
生物柴油是用动植物油脂或长链脂肪酸与甲醇等低碳醇合成的脂肪酸甲酯,是一种替代能源。这里探讨了生物法制备生物柴油的过程,采用脂肪酶酯化和酯交换两条工艺路线进行催化合成。深入研究制备过程中,不同脂肪酶、酶的用量和纯度、有机溶剂、低碳醇的抑制作用、吸水剂的作用、反应时间和进程、底物的特异性和底物摩尔比等参数对酯化过程的影响。试验结果表明,采用最佳酯化反应参数和分批加入甲醇并用硅胶作脱水剂的工艺过程,酯化率可以达到92%,经分离纯化后的产品GC分析的纯度可达98%以上,固定化酶的使用半衰期可达到360h。同时对酯交换制备生物柴油过程中,甲醇的用量和甲醇的加入方式对脂肪酶催化过程的影响作了初步研究,优化后的酯交换率可达到83%。  相似文献   

11.
Perspectives for biotechnological production of biodiesel and impacts   总被引:3,自引:0,他引:3  
In recent years, biological ways for biodiesel production have drawn an increasing attention and compared to chemical approaches, lipase-mediated alcoholysis for biodiesel production has many advantages. Currently, there are extensive reports about enzyme-mediated alcoholysis for biodiesel production, and based on the application forms of biocatalyst, the related research can be classified into immobilized lipase, whole cell catalyst, and liquid lipase-mediated alcoholysis for biodiesel production, respectively. This mini-review is focusing on the study of the aforementioned three forms of biocatalyst for biodiesel production, as well as its impacts and prospects.  相似文献   

12.
Enzymatic methanolysis of vegetable oils for biodiesel production has become a hot point recently, in which study on whole cell as catalyst is an important field. In this paper, whole cell (Rhizopus oryzae IFO 4697) was adopted directly as biocatalyst for biodiesel production. Effects of carbon source on cell growth and whole cell-catalyzed methanolysis of vegetable oils for biodiesel production were studied. The results showed that different oils contained in the cultivation medium had varied effects on the whole cell-catalyzed methanolysis of oils; with some specified oil as the carbon source for cell cultivation, those cells expressed higher catalytic activity in catalyzing the transesterification of the same oil for biodiesel production. The initial reaction rate was increased notably (204%) with oil pretreatment on the cells before catalyzing the reaction, which was possibly due to the improved mass transferring of substrates. Under the optimized conditions, the maximum methyl ester yield could reach 86%.  相似文献   

13.
Enzymatic methanolysis of vegetable oils for biodiesel production has become a hot point recently, in which study on whole cell as catalyst is an important field. In this paper, whole cell (Rhizopus oryzae IFO 4697) was adopted directly as biocatalyst for biodiesel production. Effects of carbon source on cell growth and whole cell-catalyzed methanolysis of vegetable oils for biodiesel production were studied. The results showed that different oils contained in the cultivation medium had varied effects on the whole cell-catalyzed methanolysis of oils; with some specified oil as the carbon source for cell cultivation, those cells expressed higher catalytic activity in catalyzing the transesterification of the same oil for biodiesel production. The initial reaction rate was increased notably (204%) with oil pretreatment on the cells before catalyzing the reaction, which was possibly due to the improved mass transferring of substrates. Under the optimized conditions, the maximum methyl ester yield could reach 86%.  相似文献   

14.
The cost of lipases and the relatively slower reaction rate remain as the major obstacles for enzymatic production of biodiesel as opposed to the conventional chemical processes. This paper reviews the starting oils usually employed in biodiesel production, the processes for transforming them to biodiesel placing particular emphasis on enzymatic transesterification. The pros and cons of the lipase-based process, the key operational variables and the technological alternatives for attenuating lipase deactivation are also discussed. Finally, suggestions are made for future studies, paying particular attention to the use of whole cell immobilization in the production process, as this methodology may reduce both the cost of the biocatalyst and dependence on lipase manufacturers.  相似文献   

15.
Rhizopus oryzae NBRC 4697 was selected from among promising candidates as a biocatalyst for biodiesel production. This microorganism was immobilized on to polyurethane foam coated with activated carbon for reuse, and, for biodiesel production. Vacuum drying of the immobilized cells was found to be more efficient than natural or freeze-drying processes. Although the immobilized cells were severely inhibited by a molar ratio of methanol to soybean oil in excess of 2.0, stepwise methanol addition (3 aliquots at 24-h feeding intervals) significantly prevented methanol inhibition. A packed-bed bioreactor (PBB) containing the immobilized whole cell biocatalyst was then operated under circulating batch mode. Stepwise methanol feeding was used to mitigate methanol inhibition of the immobilized cells in the PBB. An increase in the feeding rate (circulating rate) of the reaction mixture barely affected biodiesel production, while an increase in the packing volume of the immobilized cells enhanced biodiesel production noticeably. Finally, repeated circulating batch operation of the PBB was carried out for five consecutive rounds without a noticeable decrease in the performance of the PBB for the three rounds.  相似文献   

16.
Utilizing whole cell biocatalyst instead of free or immobilized enzyme is a potential way to reduce the cost of catalyst in lipase-catalyzed biodiesel production. Rhizopus oryzae (R. oryzae) IFO4697 whole cell immobilized within biomass support particles (BSPs) was used for the methanolysis of soybean oil for biodiesel production in this paper. tert-Butanol was demonstrated to be an ideal reaction medium, in which the negative effects caused by substrate methanol could be eliminated effectively. A central composite design was adopted to study the effect of tert-butanol quantity, methanol quantity, water content and dry biomass of the immobilized cell on biodiesel (methyl ester) yield. Each factor was studied in five levels. Using response surface methodology, a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. Biodiesel yield of 72% could be obtained under the optimal conditions and further verification experiments confirmed the validity of the predicted model.  相似文献   

17.
Biotechnological production of biodiesel has attracted considerable attention during the past decade compared to chemical-catalysed production since biocatalysis-mediated transesterification has many advantages. Currently, there are extensive reports on enzyme-catalysed transesterification for biodiesel production; the related research can be classified into immobilised-extracellular and immobilised-intracellular biocatalysis and this review focusses on these forms of biocatalyst for biodiesel production. The optimisation of the most important operating conditions affecting lipase-catalysed transesterification and the yield of alkyl esters, such as the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol, are discussed. However, there is still a need to optimise lipase-catalysed transesterification and reduce the cost of lipase production before it is applied commercially. Optimisation research of lipase-catalysed transesterification could include development of new reactor systems with immobilised biocatalysts, the use of lipases tolerant to organic solvents, intracellular lipases (whole microbial cells) and genetically modified microorganisms (intelligent yeasts). Biodiesel fuel is expensive in comparison with petroleum-based fuel and 60–70% of the cost is associated with feedstock oil and enzyme. Therefore ways of reducing the cost of biodiesel with respect to enzyme and substrate oils reported in literature are also presented.  相似文献   

18.
Immobilized Candida antarctica lipase B suspended in ionic liquids containing long alkyl-chain cations showed excellent synthetic activity and operational stability for biodiesel production. The interest of this process lies in the possibility of recycling the biocatalyst and the easy separation of the biodiesel from the reaction mixture. The ionic liquids used, 1-hexadecyl-3-methylimidazolium triflimide ([C(16)MIM][NTf(2)]) and 1-octadecyl-3-methylimidazolium triflimide ([C(18)MIM][NTf(2)]), produced homogeneous systems at the start of the reaction and, at the end of the same, formed a three-phase system, allowing the selective extraction of the products using straightforward separation techniques, and the recycling of both the ionic liquid and the enzyme. These are very important advantages which may be found useful in environmentally friendly production conditions.  相似文献   

19.
The study documented the potential of isolated filamentous fungus Aspergillus sp. as whole cell biocatalyst for biodiesel production using Sabourauds dextrose broth medium (SDBM) and corncob waste liquor (CWL) as substrates. SDBM showed improvement in both biomass production (13.6 g dry weight/1000 ml) and lipid productivity (23.3%) with time. Lipid extraction was performed by direct (DTE) and indirect (IDTE) transesterification methods. DTE showed higher transesterification efficiency with broad spectrum of fatty acids profile over IDTE. CWL as substrate showed good lipid productivity (22.1%; 2g dry biomass; 48 h) along with efficient substrate degradation. Lipids derived from both substrates depicted high fraction of saturated fatty acids than unsaturated ones. Physical characteristics of fungal based biodiesel correlated well with prescribed standards. CWL derived biodiesel showed relatively good fuel properties (acid number, 0.40 mg KOH/g of acid; iodine value, 11 g I?/100 g oil; density, 0.8342 g/cm3) than SDBM derived biodiesel.  相似文献   

20.
Utilizing whole cell biocatalyst for biodiesel production has some advantages since it can avoid the complex procedures of isolation, purification and immobilization of extracellular lipase. However, during repeated use of Rhizopus oryzae (R. oryzae) IFO4697 whole cell for biodiesel production in solvent-free system, the whole cell exhibited very poor stability; while the whole cell stability has been found to be significantly improved in tert-butanol system compared to that in solvent-free system. The difference in whole cell stability was found to be due to the difference of product accumulation between solvent-free and tert-butanol system. After 144 h reaction, glycerol and methyl ester accumulated in the cell in solvent-free system came up to about 1000 mg/g and 350 mg/g dry biomass, respectively, while in tert-butanol system, glycerol and methyl ester accumulation was kept at a relatively low level, approximately 100 mg/g and 2 mg/g dry biomass, respectively. The accumulated glycerol influenced whole cell stability through mass transfer limitation only, while the accumulated methyl ester influenced whole cell stability through both mass transfer limitation and product inhibition. Further study showed that a slight loss in enzymatic activity in tert-butanol system was caused by protein leakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号