首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
云南兰科二新种刘方媛(中国科学院昆明植物研究所,昆明650204)TWONEWSPECIESOFORCHIDACEAEFROMYUNNANLIUFang-Yuan(KunmingInstituteofBotany,ChineseAcademyofSc...  相似文献   

2.
X. C. ZHANG 《植物研究》1998,18(1):107-117
GENUSANTROPHYUMKAULF.FROMCHINAANDNEIGHBORINGREGIONSX.C.ZHANG(Theherbarium(PE),InstituteofBotany,ChineseAcademyofSciences,Bei...  相似文献   

3.
在长江沙洲上搁浅的中华白海豚   总被引:5,自引:0,他引:5  
在长江沙洲上搁浅的中华白海豚STRANDINGOFANINDO┐PACIFICHUMP┐BACKEDDOLP┐HINONASANDBANKINTHEYANGTZERIVER中华白海豚(Sousachinensis,Osbeck)分布在西太平洋和印度...  相似文献   

4.
东亚钳蝎神经毒素在大肠杆菌中的表达   总被引:2,自引:0,他引:2  
以山西风陵渡东亚钳蝎(ButhusmartensiKarsch)的尾腺总RNA为模板,根据已知的蝎神经毒素保守氨基酸序列设计引物,利用PCR技术,扩增并克隆了两个蝎神经毒素基因.序列分析表明,由两个基因导出的氨基酸序列(BmKMm1和BmKMm2)与已知的蝎神经毒素BmKⅠ、BmKⅡ、BmKⅢ、BmKM1、BmKM9有很高的同源性.将BmKMm2基因重组到大肠杆菌分泌型表达载体pExSec1中进行表达.SDS-PAGE证明表达产物被分泌到细胞周间质及培养液中.经IgG-Sepharose纯化后的蛋白质注射小白鼠表明表达产物有生物学活性  相似文献   

5.
噬菌体RB69外切酶活性缺失的DNA 聚合酶突变体(D222A/D327A)在大肠杆菌细胞中表达,表达量达细胞蛋白总量的69% .表达后经DEAE-Sepharose FastFlow , Source 30Q 和HTP三步分离纯化,纯度可达99% 以上.随后测定了该酶利用5种dNTP为底物进行聚合反应的酶促动力学常数(Km 和Kcat),结果表明该酶利用dUTP的能力与利用dTTP的能力相近,Km (dTTP)和Km(dUTP)均较高于其它3种脱氧核苷酸的Km (dATP, dCTP, dGTP),推测其Km 值的差异主要来源于T/U 碱基本身,而并非全部由GC碱基配对与AT碱基配对之间的氢键作用力的强弱差别所决定.  相似文献   

6.
虎斑颈槽蛇胸腺APUD细胞的免疫组织化学观察THEIMMUNOHISTOCHEMICALOBSERVATIONOFTHETHYMICAPUDCELLSINTHESNAKERHABDOPHISTIGRINAKeywordsRhadbdophistigr...  相似文献   

7.
动脉平滑肌细胞(sm ooth m uscle cell,SMC)是动脉粥样硬化(atherosclerosis,AS)斑块中的主要细胞,它的增殖在AS形成过程中极其重要.利用体外培养的人主动脉SMC,观察了天然高密度脂蛋白(native high density lipoprotein,N-HDL)及氧化修饰HDL(oxidized HDL,OX-HDL)对培养人主动脉SMC cyclin D1(细胞周期蛋白D1)基因转录表达的影响.结果表明:(1)N-HDL对SMCcyclin D1基因表达无影响(P> 0.05);(2)OX-HDL使SMCcyclin D1基因表达显著增强(P<0.01),其表达量随时间(2、12、24 h)延长而增加.上述结果表明,OX-HDL的致AS作用可能与其刺激SMCcyclin D1基因表达增加有关.  相似文献   

8.
鸡减蛋综合征病毒(EDSV—76)基因组E1区结构特点分析   总被引:1,自引:0,他引:1  
金奇  李茂祥 《病毒学报》1998,14(3):253-256
EDSV-76病毒中国株AA-2经常规方法提取其病毒DNA后,建立了限制性内切酶PstI水解片段的全基因文库。对其中PstI-G片段和PstI-A片段的正反链进行序列测定,获得EDSV E1区(0-8.8m.u)的核苷酸序列。经分析,EDSV E1区具有与其他腺病毒E1区类似的结构。以大于60个氨基酸残基为标准,EDSV E1区共有7个开放读码框架(ORF),其中R1、R2、ElbsT和E1b1T  相似文献   

9.
日本血吸虫26kD抗原基因在BCG中的表达   总被引:5,自引:0,他引:5  
研究了外源基因日本血吸虫26kD抗原(Sj26GST)在卡介苗(bacilusCalmete-Guerin,BCG)、耻垢分枝杆菌(M.smegmatis)和大肠杆菌(E.coli)中的表达.运用重组DNA和聚合酶链反应(PCR)等分子生物学技术,以表达Sj26GST的E.colipGEX衍生质粒为模板,经PCR得到编码Sj26GST的全长cDNA片段.将其按正确的阅读框顺序,克隆到人结核杆菌热休克蛋白(heatshockprotein,HSP)70的启动子下游,再将HSP70启动子和Sj26GST基因一起亚克隆到E.coli-分枝杆菌穿梭质粒pBCG-2000中,得到E.coli-分枝杆菌穿梭表达质粒pBCG-Sj26.pBCG-Sj26电转化入BCG和M.smegmatismc2155中表达Sj26GST抗原,所表达的天然重组Sj26GST(rSj26GST)为可溶性蛋白,在SDS-PAGE上分子量为26kD处可见明显的表达蛋白带.其表达量分别占BCG和M.smegmatis菌体总蛋白的15%和10%.可见,Sj26GST基因能在BCG中高效表达.  相似文献   

10.
由H SD17B1基因编码的人Ⅰ型17β-羟类固醇脱氢酶(17β-hydroxysteroiddehydrogenasetype1简称Ⅰ型17HSD)催化雌酮与雌二醇之间的转化。本文研究环腺苷一磷酸简化(cAMP)对该酶在培养的绒癌胞系(JAR和JEG-3)中表达的调节作用。用8-bromo-cAMP处理两种绒癌细胞后,观察到在伴随1.3kbⅠ型17HSDmRNA表达的同时,I型17HSD蛋白浓度  相似文献   

11.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen found in unburned tobacco and tobacco smoke, and is believed to play an important role in human tobacco-induced cancers. In previous studies, NNK has been reported to induce oxidative DNA damage, and to alter DNA repair processes, effects that could contribute to pulmonary tumorigenesis in rodent models. The goal of this study was to determine the effects of NNK on levels of 8-hydroxydeoxyguanosine (8-OHdG), a biomarker of DNA oxidation, and activity of base excision repair (BER), which repairs oxidative DNA damage. Female A/J mice were treated with a tumorigenic dose of NNK (10 μmol) i.p. At 1, 2 and 24 h post treatment, there were no statistically significant differences in lung or liver 8-OHdG levels between control and NNK-treated mice (P > 0.05). Furthermore, NNK did not alter lung or liver BER activity compared to control at any time point (P > 0.05). In summary, acute treatment with a tumorigenic dose of NNK did not stimulate oxidative DNA damage or significantly alter BER activity, and these effects may not be major mechanisms of action of NNK in mouse models.  相似文献   

12.
Mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Huntington's disease (HD). We examined concentrations of 8-hydroxy-2-deoxyguanosine (OH(8)dG), a well-established marker of oxidative damage to DNA, in a transgenic mouse model of HD (R6/2). Increased concentrations of OH(8)dG were found in the urine, plasma and striatal microdialysates of the HD mice. Increased concentrations were also observed in isolated brain DNA at 12 and 14 weeks of age. Immunocytochemistry showed increased OH(8)dG staining in late stages of the illness. These results suggest that oxidative damage may play a role in the pathogenesis of neuronal degeneration in the R6/2 transgenic mouse model of HD.  相似文献   

13.
Oxidative DNA damage caused by intracellular reactive oxygen species (ROS) is widely considered to be important in the pathology of a range of human diseases including cancer as well as in the aging process. A frequently occurring mutagenic base lesion produced by ROS is 8-oxo deoxyguanine (8-oxo dG) and the major enzyme for repair of 8-oxo dG is 8-oxoguanine-DNA glycosylase 1 (OGG1). There is now substantial evidence from bulk biochemical studies that a common human polymorphic variant of OGG1 (Ser326Cys) is repair deficient, and this has been linked to individual risk of pathologies related to oxidative stress. In the current study, we have used the technique of multiphoton microscopy to induce highly localized oxidative DNA damage in discrete regions of the nucleus of live cells. Cells transfected with GFP-tagged OGG1 proteins demonstrated rapid (<2 min) accumulation of OGG1 at sites of laser-induced damage as indicated by accumulation of GFP-fluorescence. This was followed by repair as evidenced by loss of the localized fluorescence over time. Quantification of the rate of repair confirmed that the Cys326 variant of OGG1 is repair deficient and that the initial repair rate of damage by Cys326 OGG1 was 3 to 4 fold slower than that observed for Ser326 OGG1. These values are in good agreement with kinetic data comparing the Ser326 and Cys326 proteins obtained by biochemical studies.  相似文献   

14.
Increased reactive oxygen species (ROS) levels produced by hyperglycemia and angiotensin-II (AT-II) are considered among the pathogenic factors in the malignant transformation of diabetic renal cells. We aimed to investigate the potential role of AT-II in the increased cancer risk seen in diabetes; measuring oxidative damage to renal DNA and protective antioxidant defenses, including adiponectin (Adp) and plasma antioxidant capacity by the Ferric Reducing Ability of Plasma (FRAP) method. In the kidney of streptozotocin (STZ)-induced (55 mg/kg) diabetic rats either treated or not treated for 3 weeks with losartan, an AT-II type 1 receptor antagonist (20 mg/kg/day); we measured 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) levels, as an index of oxidative DNA damage, circulating Adp and FRAP. Diabetic rats showed significantly higher 8-oxodGuo levels in renal DNA (8.48 ± 0.98 × 10−6 dG, mean ± SEM n = 11) than normoglycemic ones (1.18 ± 0.04 × 10−6 dG, mean ± SEM, n=7) and lower plasma Adp and FRAP levels in comparison to normoglycemics. The treatment of diabetic rats with losartan significantly (P < 0.01) reduced 8-oxodGuo levels (5.4 ± 0.58 × 10−6 dG, mean ± SEM n=9) in renal DNA and conserved FRAP values. Moreover, an inverse correlation was found between 8-oxodGuo in kidney DNA and circulating Adp levels in normoglycemic and diabetic rats. Losartan treatment preserves FRAP levels, reduces DNA oxidative injury and thus the carcinogenesis risk. Furthermore, our results indicate that Adp plasma levels are a further marker of oxidative injury to the kidney and confirm that it is an important part of the plasma antioxidant defense.  相似文献   

15.
Roles of reactive oxygen species (ROS) in damage to mitochondrial DNA (mtDNA) following ultraviolet (UV)-irradiation were investigated in the human hepatoma cell line SK-HEP-1. We altered the intracellular status of ROS by the overexpression of manganese superoxide dismutase (MnSOD) and/or catalase. Using HPLC, we analyzed 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), known as a marker of damage to DNA molecules. UV-irradiation resulted in the accumulation of 8-oxodGuo in these cells. The overexpression of MnSOD enhanced the accumulation of 8-oxodGuo by UV. The co-overexpression of catalase inhibited the accumulation of 8-oxodGuo by UV in MnSOD-transfectants. The overexpression of MnSOD reduced the colony forming capacity in SK-HEP-1 cells and the co-overexpression of catalase with MnSOD stimulated the capacity compared to control. UV-irradiation inhibited the colony forming capacity in these cells; no difference was observed among the capacities of control, MnSOD- and catalase-transfectants. However, the overexpression of MnSOD/catalase significantly rescued the reduction of colony forming capacity by UV-irradiation. Our results suggest that the accumulation of hydrogen peroxide plays a key role in the oxidative damage to mtDNA of UV-irradiated cells, and also that the overexpression of both MnSOD and catalase reduces the mtDNA damage and blocks the growth inhibition by UV. Our results also indicate that the increased activity of MnSOD may lead to a toxic effect on mtDNA by UV-irradiation.  相似文献   

16.
8-Hydroxydeoxyguanosine (8-OHdG) is now widely used as a sensitive marker of oxidative damage to DNA. When human granulocytes are stimulated with TPA, they release a large quantity of reactive oxygen species (superoxide, hydrogen peroxide) which might be expected to generate hydroxyl radicals (OH-) which in turn could produce 8-OHdG in the DNA. There had been considerable debate as to whether OH -is detectable in stimulated granulocytes; most workers now agree that none can be detected, unless exogenous iron is added. An earlier report had described that 8-OHdG (a marker of OH -) was increased in the DNA of TPA-stimulated, compared to control, granulocytes. We have repeated this experiment and have been unable to reproduce this Finding. We conclude that the amount of 8-OHdG produced in the DNA of TPA-stimulated human ganulocytes is indistinguishable from that seen in control (unstimulated) cells (less than one 8- OHdG/105 dG).  相似文献   

17.
生物体内的活性氧(Reactive oxygen species,ROS)过量引起氧化应激将导致脂质、DNA和蛋白质氧化损伤,从而引发一系列生理和病理反应。绿茶中茶多酚的主要成分表没食子儿茶素没食子酸酯((-)-Epigallocatechin-3-gallate,EGCG)具有强抗氧化性,能有效抑制ROS。本文简要介绍了生物体内ROS的来源和EGCG的特性及其对ROS的抑制作用。通过检测玫瑰红水溶液在光敏化时所产生~1O_2的1 270 nm近红外发光,分析比较了EGCG和迭代钠(NaN_3)对~1O_2发光的淬灭过程,发现EGCG对~1O_2的淬灭效果比NaN_3更好,为EGCG淬灭~1O_2的定量研究提供理论依据。  相似文献   

18.
Tapas Saha  Eliot M. Rosen 《FEBS letters》2009,583(9):1535-8232
Previous studies have shown that the breast cancer suppressor BRCA1 stimulates antioxidant gene expression and protects cells against oxidative stress. To further examine this important function, we tested whether BRCA1 could modulate intracellular levels of reactive oxygen species (ROS). Wild-type BRCA1 (but not a cancer-associated mutant) significantly reduced ROS levels, determined by DCF fluorescence assays by flow cytometry and confocal microscopy. The BRCA1 and REF1 pathways for reduction of ROS levels appear to exhibit cross-talk. BRCA1 also reduced the levels of protein nitration and H2O2-induced oxidative damage to DNA. Thus, BRCA1 may protect cellular macromolecules by reducing intracellular ROS levels.  相似文献   

19.
Roles of reactive oxygen species (ROS) in damage to mitochondrial DNA (mtDNA) following ultraviolet (UV)-irradiation were investigated in the human hepatoma cell line SK-HEP-1. We altered the intracellular status of ROS by the overexpression of manganese superoxide dismutase (MnSOD) and/or catalase. Using HPLC, we analyzed 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo), known as a marker of damage to DNA molecules. UV-irradiation resulted in the accumulation of 8-oxodGuo in these cells. The overexpression of MnSOD enhanced the accumulation of 8-oxodGuo by UV. The co-overexpression of catalase inhibited the accumulation of 8-oxodGuo by UV in MnSOD-transfectants. The overexpression of MnSOD reduced the colony forming capacity in SK-HEP-1 cells and the co-overexpression of catalase with MnSOD stimulated the capacity compared to control. UV-irradiation inhibited the colony forming capacity in these cells; no difference was observed among the capacities of control, MnSOD- and catalase-transfectants. However, the overexpression of MnSOD/catalase significantly rescued the reduction of colony forming capacity by UV-irradiation. Our results suggest that the accumulation of hydrogen peroxide plays a key role in the oxidative damage to mtDNA of UV-irradiated cells, and also that the overexpression of both MnSOD and catalase reduces the mtDNA damage and blocks the growth inhibition by UV. Our results also indicate that the increased activity of MnSOD may lead to a toxic effect on mtDNA by UV-irradiation.  相似文献   

20.
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号