首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A strictly anaerobic, homoacetogenic, gram-positive, non spore-forming bacterium, designated strain SR12(T) (T = type strain), was isolated from an anaerobic methanogenic digestor fed with olive mill wastewater. Yeast extract was required for growth but could also be used as sole carbon and energy source. Strain SR12(T) utilized a few carbohydrates (glucose, fructose and sucrose), organic compounds (lactate, crotonate, formate and betaine), alcohols (methanol), the methoxyl group of some methoxylated aromatic compounds, and H2 + CO2. The end-products of carbohydrate fermentation were acetate, formate, butyrate, H2 and CO2. End-products from lactate and methoxylated aromatic compounds were acetate and butyrate. Strain SR12(T) was non-motile, formed aggregates, had a G+C content of 55 mol % and grew optimally at 35 degrees C and pH 7.2 on a medium containing glucose. Phylogenetically, strain SR12(T) was related to Eubacterium barkeri, E. callanderi, and E. limosum with E. barkeri as the closest relative (similarity of 98%) with which it bears little phenotypic similarity or DNA homology (60%). On the basis of its phenotypic, genotypic, and phylogenetic characteristics, we propose to designate strain SR12(T) as Eubacterium aggregans sp. nov. The type strain is SR12(T) (= DSM 12183).  相似文献   

2.
An anaerobic, non-motile, rod shaped bacterium is described which cleaves the phenylether bonds of methoxylated aromatic substrates to give the corresponding hydroxy aromatic derivatives and mixed volatile fatty acids, chain length, C1, C2 and C4. The bacterium was isolated from an anaerobic digestor fed with contents from a wood fiber to alcohol fermentation plant, using anaerobic rolltube medium with ferulate as the carbon and energy source. Moles fatty acid produced per 100 mole of methoxyl group of aromatic substrate fermented were approximately: acetate, 14; butyrate, 18; and formate, 15. For the fermentation of equimolar amounts of methoxylated aromatic compounds, growth yields were proportional to the number of methoxylated groups per molecule, and the amount of cells per methoxyl group did not alter when phenylacrylate derivatives were used as substrates. The organism was unable to reduce the side-chain double bond of phenylacrylate derivatives. Coculture of the bacterium on ferulate with Methanospirillum hungatei, or Desulfovibrio in the presence of SO 4 = resulted in no nett production of formate, and small quantities of methane and sulfide were produced respectively. The isolate utilized glucose, fructose, and lactate, but not methanol or H2–CO2 as growth substrates. Lactate, butyrate, acetate, formate and small quantities of H2 were produced from glucose fermentation. No reduction of SO 4 = or NO 3 - occurred during fermentation of glucose or methoxylated aromatics and no growth occurred in the presence of oxygen.  相似文献   

3.
The coupling of growth of the o-demethylating bacterium, Clostridium methoxybenzovorans SR3, with a nitrate-reducing bacterium able to degrade aromatic compounds, Thauera sp. Cin3,4, allowed complete mineralization of poorly oxidizable methoxylated aromatic compounds such as vanillate, isovanillate, vanilline, anisate, ferulate and veratrate. C. methoxybenzovorans o-demethylated these aromatic compounds to their corresponding hydroxylated derivatives and fermented the side chains to acetate and butyrate. The hydroxylated compounds and the fermentation end-products in the C. methoxybenzovorans spent growth medium were then completely metabolized to CO2 on inoculation with the Thauera strain. Kinetic studies with veratrate indicated that C. methoxybenzovorans initially o-demethylated the substrate to vanillate and then further to protocatechuate together with the production of acetate and butyrate from the demethylated side chains. Protocatechuate, acetate and butyrate were then utilized as a carbon source by the Thauera strain aerobically or anaerobically in the presence of nitrate. The results therefore suggest that mono- or dimethoxylated aromatic compounds can be completely mineralized by coupling the growth of a fermentative bacterium with a nitrate-reducing bacterium, and a metabolic pathway for this is proposed.  相似文献   

4.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   

5.
6.
A new strictly anaerobic thermophilic multicellular filamentous bacterium (0.2–0.3 μm × >100 μm), designated GNS-1T, was isolated from a deep hot aquifer in France. It was non-motile, and stained Gram-negative. Optimal growth was observed at 65 °C, pH 7.0, and 2 g L−1 of NaCl. Strain GNS-1T was chemoorganotrophic fermenting ribose, glucose, galactose, arabinose, fructose, mannose, maltose, sucrose, xylose, raffinose, pyruvate, and xylan. Yeast extract was required for growth. The end products of glucose fermentation were lactate, acetate, CO2, and H2. The G + C content of the DNA was 57.6 mol%. Its closest phylogenetic relative was Bellilinea caldifistulae with 92.5% similarity. Based on phylogenetic, genotypic and phenotypic characteristics, strain GNS-1T (DSM 23592T, JCM 16980T) is proposed to be assigned to a novel species of a novel genus within the class Anaerolineae (subphylum I), phylum “Chloroflexi”, Thermanaerothrix daxensis gen. nov., sp. nov. The GenBank accession number is HM596746.  相似文献   

7.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

8.
The fermentative metabolism of Rhodospirillum rubrum (strain Ha, F1, S1) was studied after transfering the cells from aerobic to anaerobic dark culture conditions. Pyruvate was metabolized mainly to acetate and formate, and to a lesser extent to CO2 and propionate, by all strains. Therefore, pyruvate formate lyase would appear to be the characteristic key enzyme of the dark anaerobic fermentation metabolism in R. rubrum. Strain F1 and S1 metabolized the formate further to H2 and CO2. It is concluded that this cleavage was catalysed by a formate hydrogen lyase system. Strain Ha was unable to metabolize formate. The cleavage of formate and the synthesis of poly--hydroxy-butyric acid were increased by a low pH value (6.5). Fermentation equations and schemes of the pyruvate metabolism are discussed.  相似文献   

9.
Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4 +, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.  相似文献   

10.
We isolated a methanogenic strain, designated as strain TMA (=DSM 9195), from an enrichment culture inoculated with a Japanese paddy field soil. Strain TMA was Gram positive and strictly anaerobic. Cell shape was pseudosarcina-like, and cells were nonmotile. The strain was able to use methylamines, methanol, H2–CO2, and acetate as substrates for methanogenesis, but did not utilize formate. The optimum temperature and optimum pH were 30–37°C and 6.5–7.5 respectively. The G+C content of the DNA was 42.1 mol %. Strain TMA had DNA-DNA hybridization values of more than 80% with Methanosarcina mazeii S-6T (T = type strain). On the basis of phenotypic and genotypic characteristics, we identified strain TMA as M. mazeii. This is the first methylotrophic methanogen isolated from a paddy field soil and identified to the species level.  相似文献   

11.
A sulfate-reducing bacterium, designated strain ESC1, was isolated and found to be a new species. Strain ESC1 is a strictly anaerobic, gram-negative, non-sporeforming, motile, short, round-ended rod often occurring in pairs. Of 31 fermentative substrates tested, only pyruvate was utilized. Sulfate enhanced growth with pyruvate and allowed growth with ethanol, lactate, formate and hydrogen. Both sulfate and thiosulfate were reduced. Lactate was incompletely oxidized to acetate and CO2. The strain was desulfoviridin negative. The G+C content is 59.9%. These data suggested placement of strain ESC1 in the genus Desulfomicrobium. Comparative 16S rRNA analysis showed that strain ESC1 shares 98% rRNA sequence similarity with Desulfomicrobium baculatum and Desulfovibrio desulfuricans strain Norway 4. The latter two strains shared greater than 99% 16S rRNA sequence similarity. Strain ESC1 has been designated as the new species Desulfomicrobium escambium. We also recommend that D. desulfuricans strain Norway 4 be considered for reclassification as a Desulfomicrobium species.  相似文献   

12.
An anaerobic phthalate isomer-degrading strain (JTT) that we previously isolated was characterized. In addition, a strictly anaerobic, mesophilic, syntrophic phthalate isomer-degrading bacterium, designated strain JIT, was isolated and characterized in this study. Both were non-motile rods that formed spores. In both strains, the optimal growth was observed at temperatures around 37°C and neutral pH. In syntrophic co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei, both strains could utilize two or three phthalate isomers for growth, and produce acetate and methane as end products. Strain JTT was able to grow on isophthalate, terephthalate, and a number of low-molecular weight aromatic compounds, such as benzoate, hydroquinone, 2-hydroxybenzoate, 3-hydroxybenzoate, 2,5-dihydroxybenzoate, 3-phenylpropionate in co-culture with M. hungatei. It could also grow on crotonate, hydroquinone and 2,5-dihydroxybenzoate in pure culture. Strain JIT utilized all of the three phthalate isomers as well as benzoate and 3-hydroxybenzoate for growth in co-culture with M. hungatei. No substrates were, however, found to support the axenic growth of strain JIT. Neither strain JTT nor strain JIT could utilize sulfate, sulfite, thiosulfate, nitrate, fumarate, Fe (III) or 4-hydroxybenzoate as electron acceptor. Phylogenetically, strains JTT and JIT were relatively close to the members of the genera Pelotomaculum and Cryptanaerobacter in ‘Desulfotomaculum lineage I’. Physiological and chemotaxonomic characteristics indicated that the two isolates should be classified into the genus Pelotomaculum, creating two novel species for them. Here, we propose Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov. for strain JTT and strain JIT, respectively. The type strains are strains JTT (= DSM 16121T = JCM 11824T = NBRC 100523T) and JIT (= JCM 12282T = BAA-1053T) for P. terephthalicum and P. isophthalicum, respectively.Nucleotide sequence accession number: The GenBank/EMBL/DDBJ accession numbers of the 16S rRNA gene sequences of strains JTT and JIT are AB091323 and AB232785, respectively  相似文献   

13.
Strictly anaerobic bacteria were enriched and isolated from freshwater sediment sources in the presence and absence of sulfate with sorbic acid as sole source of carbon and energy. Strain WoSo1, a Gram-negative vibrioid sulfate-reducing bacterium which was assigned to the species Desulfoarculus (formerly Desulfovibrio) baarsii oxidized sorbic acid completely to CO2 with concomitant stoichiometric reduction of sulfate to sulfide. This strain also oxidized a wide variety of fatty acids and other organic compounds. A Gram-negative rod-shaped fermenting bacterium, strain AmSo1, fermented sorbic acid stoichiometrically to about equal amounts of acetate and butyrate. At concentrations higher than 10 mM, sorbic acid fermentation led to the production of pentanone-2 and isopentanone-2 (3-methyl-2-butanone) as byproducts. Strain AmSo1 fermented also crotonate and 3-hydroxybutyrate to acetate and butyrate, and hexoses to acetate, ethanol, hydrogen, and formate. The guanine-plus-cytosine content of the DNA was 41.8±1.0 mol%. Sorbic acid at concentrations higher than 5 mM inhibited growth of this strain while strain WoSo1 tolerated sorbic acid up to 10 mM concentration.  相似文献   

14.
A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65°C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l−1, while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l−1. When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l−1. These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.  相似文献   

15.
Three strains of strictly anaerobic Gram-negative, non-sporeforming, motile bacteria were enriched and isolated from freshwater sediments with 1,3-propanediol as sole energy and carbon source. Strain OttPdl was a sulfate-reducing bacterium which grew also with lactate, ethanol, propanol, butanol, 1,4-butanediol, formate or hydrogen plus CO2, the latter only in the presence of acetate. In the absence of sulfate, most of these substrates were fermented to the respective fatty acids in syntrophic cooperation with Methanospirillum hungatei. Sulfur, thiosulfate, or sulfite were reduced, nitrate not. The other two isolates degraded propanediol only in coculture with Methanospirillum hungatei. Strain OttGlycl grew in pure culture with acetoin and with glycerol in the presence of acetate. Strain WoAcl grew in pure culture only with acetoin. Both strains did not grow with other substrates, and did not reduce nitrate, sulfate, sulfur, thiosulfate or sulfite. The isolates were affiliated with the genera Desulfovibrio and Pelobacter. The pathways of propanediol degradation and the ecological importance of this process are discussed.  相似文献   

16.
Strain X4 was isolated several years ago from an anaerobic mesophilic plant treating vegetable cannery waste waters. It was the first example of propionic fermentation from ethanol. Morphologic and physiologic characterizations of the strain are presented here. This strain is described as type strain of a new species, Clostridium neopropionicum sp. nov. Whole cells of strain X4 ferment [1-13C]ethanol and CO2 to [2-13C]propionate, [1-13C]acetate and [2-13C]propanol, suggesting the absence of a randomizing pathway during the propionate formation. Enzymes involved in this fermentation were assayed in cell-free extracts of cells grown with ethanol as sole substrate. Alcohol dehydrogenase, aldehyde dehydrogenase, phosphate acetyl transferase, acetate kinase, pyruvate synthase, lactate dehydrogenases, and the enzymes of the acrylate pathway were detected at activities sufficient to be involved in ethanol fermentation. The same pathway may be used for the degradation of lactate or acrylate to acetate.  相似文献   

17.
From an anaerobic enrichment culture with vanillate as substrate, a catechol-degrading lemon-shaped nonsporing sulfate-reducing bacterium, strain NZva20, was isolated in pure culture. Growth occurred in defined, bicarbonate-buffered, sulfide-reduced freshwater medium with catechol as sole electron donor and carbon source. Catechol was completely oxidized to CO2 with an average growth yield of 31 g cell dry mass per mol of catechol, corresponding to 9.5 g cell dry mass per mol of sulfate reduced. Further substrates utilized as electron donors and carbon sources were resorcinol, hydroquinone, benzoate and several other aromatic compounds, hydrogen plus carbon dioxide, formate, lactate, pyruvate, alcohols including methanol, dicarboxylic acids, acetate, propionate and higher fatty acids up to 18 carbon atoms. Instead of sulfate, sulfite, thiosulfate, dithionite or nitrate served as electron acceptors. Nitrate was reduced to ammonium. Strain NZva20 is the first bacterium in which the complete oxidation of organic substrates is linked to the ammonification of nitrate. Elemental sulfur was not utilized as electron acceptor. In the absence of an electron acceptor slow growth occurred on pyruvate or fumarate. The G+C content of the DNA of strain NZva20 was 52.4 mol%. Cytochromes were present. Desulfoviridin could not be detected. Strain NZva20 is described as type strain of a new species, Desulfobacterium catecholicum sp. nov.Affectionately dedicated to Professor Ralph S. Wolfe on the occassion of his 65th birthday  相似文献   

18.
Anaerobic degradation of betaine by marine Desulfobacterium strains   总被引:2,自引:0,他引:2  
From enrichment cultures with betaine (20 mM) and sulfate (20 mM) as the substrates and intertidal mud as an inoculum, a betaine-oxidizing, sulfate-reducing bacterium (strain PM4) was isolated. Strain PM4 was an oval to rod-shaped, Gram-negative, motile bacterium, which was able to oxidize lactate completely to CO2 and contained, during growth on betaine and sulfate, high activities of key enzymes of the acetyl CoA/CO dehydrogenase pathway (carbon monoxide dehydrogenase and formate dehydrogenase), but not of 2-oxo-glutarate dehydrogenase, a key enzyme of the citric acid cycle. On the basis of its morphological and physiological characteristics, strain PM4 was identified as a Desulfobacterium strain. Desulfobacterium PM4 grew on betaine with a doubling time of approximately 20 h at 30°C and produced N, N-dimethylglycine (in a 1:1 ratio) and sulfide as products. In this type of betaine metabolism one of the methyl groups of betaine is oxidized to CO2 and the reducing equivalents generated are used for the reduction of sulfate. Desulfobacterium autotrophicum (DSM 3382) grew also on betaine and sulfate with the formation of N,N-dimethylglycine, sulfide and CO2.  相似文献   

19.
A gram-positive, motile, rod-shaped, strictly anaerobic, sporulating bacterium was isolated from an enrichment initiated with mullet gut contents. The organism grew optimally at 30°C and pH6.5, and at a salinity of 1–103. Out of a variety of polysaccharides tested as growth substrates, only alginate supported growth in either semidefined or complex culture medium. The organism also grew on a variety of mono- and disaccharides. Moles product per 100mol of alginate monomer degraded were: acetate, 186; ethanol, 19; formate, 54; and CO2, 0.19. Moles product per 100mol of hexose in cellobiose or glucose degraded were: acetate, 135; ethanol,61; formate, 63: and CO2, 61. Hydrogen was not detectable during the incubations (detection limit, <10-5atm) and propionate, butyrate, lactate, or succinate were not produced as fermentation end products (<2 mol per 100 mol of monomer). The G+C content of DNA from the bacterium was 30.2±0.3 mol%, and the cell walls contained the peptidoglycan component meso-diaminopimelic acid. A phylogenetic analysis of the 16S rDNA sequence indicated that the organism grouped closely with members of the RNA-DNA homology group 1 of the genus Clostridium. However, it differed from other species of the genus with regard to morphology, growth temperature optimum, substrate range, and fermentation pattern and is therefore designated as a new species of Clostridium; the type strain is A-1 (DSM 8605).  相似文献   

20.
Five strains of sulfate-reducing bacteria were isolated from the highest positive dilutions of a most probable number (MPN) series supplemented with lactate and inoculated with sediments from the oligotrophic Lake Stechlin. The isolates were endospore-forming and were motile by means of laterally inserted flagella. They stained Gram-negative and contained b-type cytochromes. CO difference spectra indicated the presence of P582 as a sulfite reductase. Phylogenetic analyses of the 16S rDNA sequences revealed that the isolates were very closely affiliated with the genus Sporomusa. However, sulfate and amorphous Fe(OH)3, but not sulfite, elemental sulfur, MnO2, or nitrate were used as terminal electron acceptors. Homoacetogenic growth was found with H2/CO2 gas mixture, formate, methanol, ethanol, and methoxylated aromatic compounds. The strains grew autotrophically with H2 plus CO2 in the presence or absence of sulfate. Formate, butyrate, several alcohols, organic acids, carbohydrates, some amino acids, choline, and betaine were also utilized as substrates. The growth yield with lactate and sulfate as substrate was 7.0 g dry mass/mol lactate and thus two times higher than in sulfate-free fermenting cultures. All isolates were able to grow in a temperature range of 4–37°C. Physiologically and by the presence of a Gram-negative cell wall, the new isolates resemble known Desulfosporosinus species. However, phylogenetically they are affiliated with the Gram-negative genus Sporomusa belonging to the Selenomonas subgroup of the Firmicutes. Therefore, the new isolates reveal a new phylogenetic lineage of sulfate-reducing bacteria. A new genus and species, Desulfosporomusa polytropa gen. nov., sp. nov. is proposed.Dedicated to Prof. H. G. Schlegel on the occasion of his 80th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号