首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhilina  T. N.  Garnova  E. S.  Tourova  T. P.  Kostrikina  N. A.  Zavarzin  G. A. 《Microbiology》2001,70(6):711-722
New alkaliphilic, saccharolytic, rod-shaped, gram-positive bacteria resistant to heating and drying and phylogenetically affiliated to the Bacilluslineage were isolated under strictly anaerobic conditions from sediments of the alkaline and highly mineralized Lake Magadi. Strain Z-7792 forms endospores; in strain Z-7984, endospore formation was not revealed. The strains are capable of both anaerobic growth (at the expense of fermentation of glucose and certain mono- and disaccharides with the formation of formate, ethanol, and acetate) and aerobic growth. Among polysaccharides, the strains hydrolyze starch, glycogen, and xylan. Yeast extract or methionine are required for growth. The strains are strict alkaliphiles exhibiting obligate requirement for Na+and carbonate ions, but not for Clions. Growth occurs at a total mineralization as high as 3.3–3.6 M Na+, with an optimum at 1–1.7 M Na+. Strain Z-7792 is an obligate alkaliphile with a pH growth range of 8.5–11.5 and an optimum of 9.5–9.7. Strain Z-7984 grows in a pH range of 7.0–10.5 with an optimum at 8.0–9.5. Both strains are mesophiles having a growth optimum at 37–38°C. The G+C contents of the DNA of strains Z-7792 and Z-7984 are 39.2 and 41.5 mol %, respectively. These isolates of facultatively anaerobic, strictly alkaliphilic, Na+-dependent bacilli can be considered representatives of the ecological group adapted to life at drying-up shoals of soda lakes. Because of their independence of NaCl and lack of obligate dependence on sodium carbonates, the isolates are to be assigned to athalassophilic organisms. According to their physiological and phylogenetic characteristics, they taxonomically belong to group 1 of the species of bacilli with a low G+C content and occupy a position intermediate between the genera Amphibacillusand Gracilibacillus.The isolates are described as new species of Amphibacillus: A. fermentum(type strain, Z-7984T) and A. tropicus(type strain, Z-7792T).  相似文献   

2.
Three strains of new obligately anaerobic alkaliphilic bacteria have been isolated as a saccharolytic component from the cellulolytic community of alkaline Lake Nizhnee Beloe (Transbaikal region, Russia), a lake with low salt concentration. DNA analysis of these strains showed an interspecies level of DNA similarity of 96–100%. Strain Z-79820 was selected for further investigations. Cells were Gram-positive, asporogenous, nonmotile short rods with pointed ends. The strain was a true alkaliphile: growth occurred from pH 7.2 to 10.2 with the optimum at pH 9.0. Strain Z-79820 was halotolerant and could grow in medium with up to 10% (w/v) NaCl, with the optimum between 0 and 4% NaCl. The new isolate obligately depended on Na+ ions in the form of carbonates or chlorides. Total Na+ content needed for optimal growth was 0.46 M Na+, with a wide range from 0.023–0.9 M Na+ at which growth also occurred. The isolate was a mesophile and grew at temperatures from 6 to 50°C (slow growth at 6 and 15°C) with an optimum at 35°C. The organotrophic organism fermented ribose, xylose, glucose, mannose, fructose, sucrose, mannitol, and peptone. The products of glucose fermentation were acetate, ethanol, formate, H2, and CO2. Yeast extract was required for some anabolic needs. The DNA G+C content of the type strain Z-79820 was 42.1 mol%. The new bacterium fell into the 16S rRNA gene cluster XV of the Gram-positive bacteria with low G+C content, where it formed an individual branch. Based on its growth characteristics and genotype traits, we propose the new genus and species named Alkalibacter saccharofermentans with the type strain Z-79820 (=DSM14828), Uniqem-218 (Institute Microbiology, RAS; ).  相似文献   

3.
A novel s-triazine-mineralizing bacterium—Nocardioides sp. strain DN36—was isolated from paddy field soil treated with ring-U-14C-labeled simetryn ([14C]simetryn) in a model paddy ecosystem (microcosm). In a tenfold-diluted R2A medium, strain DN36 liberated 14CO2 from not only [14C]simetryn but also three ring-U-14C-labeled s-triazines: atrazine, simazine, and propazine. We found that DN36 mineralized ring-U-14C–cyanuric acid added as an initial substrate, indicating that the bacterium mineralized s-triazine herbicides via a common metabolite, namely, cyanuric acid. Strain DN36 harbored a set of genes encoding previously reported s-triazine-degrading enzymes (TrzN-AtzB-AtzC), and it also transformed ametryn, prometryn, dimethametryn, atraton, simeton, and prometon. The findings suggest that strain DN36 can mineralize a diverse range of s-triazine herbicides. To our knowledge, strain DN36 is the first Nocardioides strain that can individually mineralize s-triazine herbicides via the ring cleavage of cyanuric acid. Further, DN36 could not grow on cyanuric acid, and the degradation seemed to occur cometabolically.  相似文献   

4.
A Gram-positive, motile, endospore-forming and rod-shaped halophilic bacterial strain MSS-155 (KCTC 3788 and KCCM 41687) was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic study. This organism grew at temperature of 10.0–42.0°C with an optimum of 35°C. Strain MSS-155 grew optimally in the presence of 10% NaCl and did not grow in the absence of NaCl. The cell wall peptidoglycan type of strain MSS-155 was A4 based on l-Orn-d-Asp. Strain MSS-155 was also characterized chemotaxonomically by having menaquinone-7 (MK-7) as the predominant isoprenoid quinone and anteiso-C15:0 as the major fatty acid. The DNA G+C content was 44.0 mol%. Phylogenetic analysis based on 16S rDNA sequences showed that strain MSS-155 falls within the radiation of the cluster comprising Halobacillus species. Levels of 16S rDNA sequence similarity between strain MSS-155 and the type strains of four Halobacillus species were in the range 97.6–98.8%. Strain MSS-155 exhibited levels of DNA-DNA relatedness of 6.2–11.2% to the type strains of Halobacillus species described previously. On the basis of phenotypic properties, phylogeny, and genomic data, strain MSS-155 should be placed in the genus Halobacillus as a member of a novel species, for which we propose the name Halobacillus locisalis sp. nov.Communicated by W.D. Grant  相似文献   

5.
A strain of Serratia marcescens that produced chondroitinase was isolated from soil. It produced a novel chondroitinase AC, which was purified to homogeneity. The enzyme was composed of two identical subunits of 35 kDa as revealed by SDS-PAGE and gel filtration. The isoelectric point for the chondroitinase AC was 7.19. Its optimal activity was at pH 7.5 and 40 °C. The purified enzyme was active on chondroitin sulfates A and C and hyaluronic acid, but was not with chondroitin sulfate B (dermatan sulfate), heparin or heparan sulfate. The apparent Km and Vmax of the chondroitinase AC for chondroitin sulfate A were 0.4 mg ml–1 and 85 mmol min–1 mg–1, respectively, and for chondroitin sulfate C, 0.5 mg ml–1 and 103 mmol min–1 mg–1, respectively.  相似文献   

6.
Influence of soil temperature on methane emission from rice paddy fields   总被引:18,自引:2,他引:16  
Methane emission rates from an Italian rice paddy field showed diel and seasonal variations. The seasonal variations were not closely related to soil temperatures. However, the dieL changes of CH4 fluxes were significantly correlated with the diel changes of the temperature in a particular soil depth. The soil depths with the best correlations between CH4 flux and temperature were shallow (1–5cm) in May and June, deep (10–15cm) in June and July, and again shallow (1–5 cm) in August. Apparent activation energies (Ea) calculated from these correlations using the Arrhenius model were relatively low (50–150 kJ mol–1) in May and June, but increased to higher values (80–450 kJ mol–1) in August. In the laboratory, CH4 emission from two rice cultures incubated at temperatures between 20 and 38°C showed E . values of 41 and 53 kJ mol–1) Methane production in anoxic paddy soil suspensions incubated between 7 and 43°C showed E values between 53 and 132 kJ mol–1 with an average value of 85 kJ mol–1) and in pure cultures of hydrogenotrophic methanogenic bacteria E a values between 77 and 173 (average 126) kJ mol–1. It is suggested that diel changes of soil properties other than temperature affect CH4 emission rates, e.g. diel changes in root exudation or in efficiency of CH4 oxidation in the rhizosphere.  相似文献   

7.
In this study, a neutrophilic, heterotrophic bacterium (strain Paddy-2) that is capable of ferrous iron [Fe(II)] oxidation coupled with nitrate (NO3?) reduction (NRFO) under anoxic conditions was isolated from paddy soil. The molecular identification by 16S rRNA gene sequencing identified the strain as Cupriavidus metallidurans. Strain Paddy-2 reduced 97.7% of NO3?and oxidized 89.7% of Fe(II) over 6?days with initial NaNO3 and FeCl2 concentrations of 9.37?mM and 4.72?mM, respectively. Acetate (5?mM) was also supplied as a carbon source and an alternative electron donor. A poorly crystalline Fe(III) mineral was the main component observed after 15?days of growth in culture, whereas lepidocrocite was detected in the X-ray diffraction spectrum after 3?months of culture. The homologous genes in electron transfer during Fe(II) oxidation (cyc1, cymA, FoxY, FoxZ, and mtoD) were also identified in the genomes of strain Paddy-2 and other reported NRFO bacteria. These genes encoding c-Cyts may play a role in electron transfer during the process of NRFO. These results provide evidence for the potential of NO3? to affect Fe(II) oxidation and biomineralization in bacterium from anoxic paddy soil.  相似文献   

8.
We isolated the feather-degrading Bacillus pseudofirmus FA30-01 from the soil sample of poultry farm. The isolate completely degraded feather pieces after liquid culture at 30°C (pH 10.5) for 3 days. Strain FA30-01 is a Gram-positive, spore-forming, rod-shaped bacterium and was identified with B. pseudofirmus based on 16S rDNA analysis. The keratinase enzyme produced by strain FA30-01 was refined using ammonium sulfate precipitation, negative-ion DEAE Toyopearl exchange chromatography, and hydroxyapatite chromatography. The refinement level was 14.5-fold. The molecular weight of this enzyme was 27.5 kDa and it had an isoelectric point of 5.9. The enzyme exhibited activity at pH 5.1–11.5 and 30–80°C with azokeratin as a substrate, although the optimum pH and temperature for keratinase activity were pH 8.8–10.3 and 60°C, respectively. This enzyme is one of the serine-type proteases. Subtilisin ALP I and this enzyme had 90% homology in the N-terminal amino acid sequence. Since this enzyme differed from ALP I in molecular weight, heat resistance and isoelectric point, they are suggested to be different enzymes.  相似文献   

9.
A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1–2 m below seafloor (mbsf) incubated at 60°C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9°C (Site 1227), one from 252 m below sea level with a temperature of 12°C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52–76°C with an optimum at around 68°C for JW/IW-1228P and 43–76°C with an optimum at around 64°C for JW/YJL-1230-7/2. The pH25C range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9–8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C content of the DNA was 50 mol% for both JW/IW-1228P and JW/YJL-1230-7/2. DNA–DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228PT is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646T=ATCC BAA-1034T), and JW/YJL-1230-7/2T into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647T =ATCC BAA-1035T).An erratum to this article can be found at  相似文献   

10.
3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L−1 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q max, K s and K i of 0.8615 h−1, 626.7842 mg·L−1 and 6.7586 mg·L−1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t 1/2) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.  相似文献   

11.
Zhilina  T. N.  Garnova  E. S.  Tourova  T. P.  Kostrikina  N. A.  Zavarzin  G. A. 《Microbiology》2001,70(1):64-72
A new alkaliphilic and moderately halophilic chemoorganotrophic anaerobic bacterium (strain Z-7986), which is spore-forming, rod-shaped, and has a gram-negative cell wall pattern, was isolated from the coastal lagoon mud of the highly mineralized Lake Magadi (Kenya). The organism is an obligatorily carbonate- and sodium chloride-dependent motile peritrichously flagellated rod that grows within a 3–17% NaCl concentration range (with an optimum at 7–12% NaCl) and within a pH range of 7.7–10.3 (with an optimum at pH values of 8–8.5). It is a moderate thermophile with a broad temperature optimum at 36–55°C; maximum growth temperature is 60°C. The bacterium catabolizes glucose, fructose, sucrose, maltose, starch, glycogen, N-acetyl-D-glucosamine, and, to a slight degree, peptone and yeast extract. Its anabolism requires yeast extract or casamino acids. Glucose fermentation yields formate, acetate, ethanol, H2, and CO2. The bacterium is sulfide-tolerant and capable of the nonspecific reduction of S0 to H2S. The G+C content of the DNA is 34.4 mol %. The analysis of the 16S rRNA sequence revealed that strain Z-7986 belongs to the order Haloanaerobiales and represents a new genus in the family Halobacteroidaceae. We suggest the name Halonatronum saccharophilum gen. nov. sp. nov. The type strain of this species is Z-7986T (= DSM13868, = Uniqem*211).  相似文献   

12.
A new chemolithoautotrophic, facultatively alkaliphilic, extremely salt-tolerant, sulfur-oxidizing bacterium was isolated from an alkaline hypersaline lake in the Altai Steppe (Siberia, Russia). According to 16S rDNA analysis and DNA–DNA hybridization, strain HL 17T was identified as a new species of the genus Thialkalivibrio belonging to the subdivision of the Proteobacteria for which the name Thialkalivibrio halophilus is proposed. Strain HL 17T is an extremely salt-tolerant bacterium growing at sodium concentrations between 0.2 and 5 M, with an optimum of 2 M Na+. It grew at high concentrations of NaCl and of Na2CO3/NaHCO3 (soda). Strain HL 17T is a facultative alkaliphile growing at pH range 7.5–9.8, with a broad optimum between pH 8.0 and 9.0. It used reduced inorganic sulfur compounds (thiosulfate, sulfide, polysulfide, elemental sulfur, and tetrathionate) as energy sources and electron donors. In continuous culture under energy limitation, thiosulfate was stoichiometrically oxidized to sulfate. In sodium carbonate medium under alkaline conditions, the maximum growth rate was similar, while the biomass yield was lower as compared with the NaCl-grown culture. The maximum sulfur-oxidizing capacity measured in washed cells was higher in the soda buffer independent of the growth conditions. The compatible solute content of the biomass was higher in the sodium chloride-grown culture than in the sodium carbonate/bicarbonate-grown culture. The data suggest that the osmotic pressure differences between soda and NaCl solutions might be responsible for the difference observed in compatible solutes production. This may have important implications in overall energetic metabolism of high salt adaptation.  相似文献   

13.
Biodegradation of xanthan by salt-tolerant aerobic microorganisms   总被引:3,自引:0,他引:3  
Summary Three salt-tolerant bacteria which degraded xanthan were isolated from various water and soil samples collected from New Jersey, Illinois, and Louisiana. The mixed culture, HD1, contained aBacillus sp. which produced an inducible enzyme(s) having the highest extracellular xanthan-degrading activity found. Xanthan alone induced the observed xanthan-degrading activity. The optimum pH and temperature for cell growth were 5–7 and 30–35°C, respectively. The optimum temperature for activity of the xanthan-degrading enzyme(s) was 35–45°C, slightly higher than the optimum growth temperature. With a cell-free enzyme preparation, the optimum pH for the reduction of solution viscosity and for the release of reducing sugar groups were different (5 and 6, respectively), suggesting the involvement of more than one enzyme for these two reactions. Products of enzymatic xanthan degradation were identified as glucose, glucuronic acid, mannose, pyruvated mannose, acetylated mannose and unidentified oligo- and polysaccharides. The weight average molecular weight of xanthan samples shifted from 6.5·106 down to 6.0·104 during 18 h of incubation with the cell-free crude enzymes. The activity of the xanthan-degrading enzyme(s) was not influenced by the presence or absence of air or by the presence of Na2S2O4 and low levels of biocides such as formaldehyde (25 ppm) and 2,2-dibromo-3-nitrilopropionamide (10 ppm). Formaldehyde at 50 ppm effectively inhibited growth of the xanthan degraders.  相似文献   

14.
Bacteria capable of degrading the pesticide, cadusafos, were isolated from agricultural soil using an enrichment method. In this way, five distinct cadusafos-degrading strains of Pseudomonas putidia were isolated, and were characterized using morphological and biochemical analysis, as well as 16S rRNA sequencing. Strain PC1 exhibited the greatest cadusafos degradation rate and was consequently selected for further investigation. Degradation of cadusafos by strain PC1 was rapid at 20 and 37°C, but was greatly reduced (~1.5-fold) by the presence of carbon sources. Strain PC1 was able to effectively degrade cadusafos in sterilized soil using low inoculum levels. The maximum degradation rate of cadusafos (V max ) was calculated as 1.1 mg l−1 day−1, and its saturation constant (K s ) was determined as 2.5 mg l−1. Bacteria such as strain PC1, that use cadusafos as a carbon source, could be employed for the bioremediation of sites contaminated with pesticides.  相似文献   

15.
A novel thermoacidophilic iron-reducing Archaeon, strain NA−1, was isolated from a hot fumarole in Manza, Japan. Strain NA-1 could grow autotrophically using H2 or S0 as an electron donor and Fe3+ as an electron acceptor, and also could grow heterotrophically using some organic compounds. Fe3+ and O2 served as electron acceptors for growth. However, S0, NO3 , NO2 , SO4 2−, Mn4+, fumarate, and Fe2O3 did not serve as electron acceptors. The ranges of growth temperature and pH were 60–90°C (optimum: 80°C) and pH 1.0–5.0 (optimum: pH 1.2–1.5), respectively. Cells were nearly regular cocci with an envelope comprised of the cytoplasmic membrane and a single outer S-layer. The crenarchaeal-specific quinone (cardariellaquinone) was detected, and the genomic DNA G + C content was 29.9 mol%. From 16S rDNA analysis, it was determined that strain NA-1 is closely related to Acidianus ambivalens (93.1%) and Acidianus infernus (93.0%). However, differences revealed by phylogenetic and phenotypic analyses clearly show that strain NA-1 represents a new species, Acidianus manzaensis, sp. nov., making it the first identified thermoacidophilic iron-reducing microorganism (strain NA-1T = NBRC 100595 = ATCC BAA 1057). Strain NA-1 has been deposited in the culture collections of the National Institute of Technology and Evolution (NBRC 100595) and American Type Culture Collection (ATCC BAA 1057). The 16S rDNA sequence has been deposited at GenBank under accession number AB182498.  相似文献   

16.
A new moderately halophilic sulfate-reducing bacterium (strain H1T) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 μm). Strain H1T grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H1T required salt for growth (1–45 g of NaCl/l), with an optimum at 20–30 g/l. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as terminal electron acceptors but not nitrate and nitrite. Strain H1T utilized lactate, pyruvate, succinate, fumarate, ethanol, and hydrogen (in the presence of acetate and CO2) as electron donors in the presence of sulfate as electron acceptor. The main end-products from lactate oxidation were acetate with H2 and CO2. The G + C content of the genomic DNA was 55%. The predominant fatty acids of strain H1T were C15:0 iso (38.8%), C16:0 (19%), and C14:0 iso 3OH (12.2%), and menaquinone MK-6 was the major respiratory quinone. Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain H1T was affiliated to the genus Desulfovibrio. On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain H1T is proposed to be assigned to a novel species of sulfate reducers of the genus Desulfovibrio, Desulfovibrio legallis sp. nov. (= DSM 19129T = CCUG 54389T).  相似文献   

17.
The haloalkaliphilic methylotrophic bacterium (strain Kr3) isolated from material scraped off the deteriorating marble of the Moscow Kremlin masonry has been found to be able to utilize methanol, methylamine, trimethylamine, and fructose as carbon and energy sources. Its cells are gram-negative motile rods multiplying by binary fission. Spores are not produced. The isolate is strictly aerobic and requires vitamin B12 and Na+ ions for growth. It is oxidase- and catalase-positive and reduces nitrates to nitrites. Growth occurs at temperatures between 0 and 40°C (with the optimum temperatures being 20–32°C), pH values between 6 and 11 (with the optimum at 8–9), and NaCl concentrations between 0.05 and 3 M (with the optimum at 0.5–1.5 M). The dominant cellular phospholipids are phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. The major cellular fatty acids are palmitic (C16:0), palmitoleic (C16:1), and octadecenoic (C18:1) acids. The major ubiquinone is Q8. It accumulates ectoine and glutamate, as well as a certain amount of sucrose, to function as osmoprotectants and synthesizes an exopolysaccharide composed of carbohydrate and protein components. It is resistant to heating at 70°C, freezing, and drying; utilizes methanol, with the resulting production of formic acid, which is responsible for the marble-degrading activity of the isolate; and implements the 2-keto-3-deoxy-6-phosphogluconate variant of the ribulose monophosphate pathway. The G+C content of its DNA is 44.6 mol %. Based on 16S rRNA gene sequencing and DNA-DNA homology levels (23–41%) with neutrophilic and alkaliphilic methylobacteria from the genus Methylophaga, the isolate has been identified as a new species, Methylophaga murata (VKM B-2303T = NCIMB 13993T).__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 511–519.Original Russian Text Copyright © 2005 by Doronina, Lee, Ivanova, Trotsenko.  相似文献   

18.
Summary An amylolytic lactic acid bacterium identified as Lactobacillus plantarum was isolated from cassava roots (Manihot esculenta var. Ngansa) during reting. The amylolytic enzyme synthesized was an extracellular -amylase with an optimum pH of 5.0 and an optimum temperature of 55° C. Cultured on starch, the strain displayed a growth rate of 0.43 h–1, a biomass yield of 0.19 g·g–1 and a lactate yield of 0.81 g·g–1. The growth kinetics were similar on starch and glucose. Sufficient enzyme was synthesized and starch hydrolysis was not a limiting factor for growth. Biosynthesis of the enzyme was observed when the glucose concentration was less than 6.7 g·l–1 and reached up to 4 IU·ml–1 at the end of the fermentation. Offprint requests to: M. Raimbault  相似文献   

19.
Chhetri  Geeta  Kim  Inhyup  Seo  Taegun 《Antonie van Leeuwenhoek》2022,115(7):943-952

A Gram-stain-positive, aerobic, motile and rod-shaped bacterium, designated RG28T, was isolated from the roots of rice plant collected from paddy fields in Ilsan, South Korea. Cells of the strain were oxidase-negative but catalase-positive. Strain RG28T was found to grow at 10–50 °C (optimum, 25–30 °C), pH 5.0–10.0 (optimum, pH 7.0) and in 1.0–5.0% (w/v) NaCl (optimum, 0%). The cell-wall peptidoglycan contained meso-diaminopimelic acid and the predominant menaquinones were MK-7 and MK-6. The predominant cellular fatty acids were C16:0, iso-C15:0 and anteiso-C15:0. The major polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, four unidentified aminophosphoglycolipids, four unidentified aminophospholipids, two unidentified glycolipids, one unidentified aminoglycolipid and four unidentified lipids. The genomic DNA G?+?C content was 33.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was closely related to Gottfriedia acidiceleris CBD 119T (98.6%), Gottfriedia solisilvae LMG 18422T (98.5%) and Gottfriedia luciferensis LMG 18422T (98.4%). The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) values between strain RG28T and type strains of Gottfriedia species were lower than the cut-offs (≥?95–96% for ANI and?≥?70% for is DDH) required to define a bacterial species. Meanwhile, the strain has the ability to produce indole-acetic acid (40.5 µg/mL). Phylogenetic, physiological and chemotaxonomic data suggested that strain RG28T represented a novel species of the genus Gottfriedia, for which the name Gottfriedia endophyticus sp. nov. is proposed, with the type strain RG28T (=?KCTC 43327T?=?TBRC 15151T).

  相似文献   

20.
Summary From the anoxic zone of an oil shale leachate column three pyridine-degrading bacterial strains were isolated. Two strains were Gram-negative facultative anaerobic rods and one strain was a branched Gram-positive bacterium. The branched Gram-positive strain had the best pyridine-degrading ability. This organism was aerobic, non-motile, catalase positive, oxidase negative, and had no flagellum. The G+C content of the DNA was 66.5 mol%. The major menaquinone was MK-8(H2). The main cellular fatty acids were saturated and monounsaturated straight chains. This organism contained mycolic acid, meso-diaminopimelic acid, arabinogalactan and glycolyl residues in the cell wall. Due to morphological, physiological and chemotaxonomic characteristics this strain was placed in the genus Rhodococcus. The optimum culture conditions were as follows: temperature 32° C, pH 8.0 and 0.1% v/v of pyridine as sole carbon, energy and nitrogen source. Utilization of pyridine by a batch fermentor culture of Rhodococcus sp. was characterized by a specific growth rate of 0.13 h–1, growth yield of 0.61 mg cell·mg pyridine–1 and a doubling time of 5.3 h–1. Offprint requests to: S.-T. Lee  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号