首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
A strictly anaerobic, homoacetogenic, gram-positive, non spore-forming bacterium, designated strain SR12(T) (T = type strain), was isolated from an anaerobic methanogenic digestor fed with olive mill wastewater. Yeast extract was required for growth but could also be used as sole carbon and energy source. Strain SR12(T) utilized a few carbohydrates (glucose, fructose and sucrose), organic compounds (lactate, crotonate, formate and betaine), alcohols (methanol), the methoxyl group of some methoxylated aromatic compounds, and H2 + CO2. The end-products of carbohydrate fermentation were acetate, formate, butyrate, H2 and CO2. End-products from lactate and methoxylated aromatic compounds were acetate and butyrate. Strain SR12(T) was non-motile, formed aggregates, had a G+C content of 55 mol % and grew optimally at 35 degrees C and pH 7.2 on a medium containing glucose. Phylogenetically, strain SR12(T) was related to Eubacterium barkeri, E. callanderi, and E. limosum with E. barkeri as the closest relative (similarity of 98%) with which it bears little phenotypic similarity or DNA homology (60%). On the basis of its phenotypic, genotypic, and phylogenetic characteristics, we propose to designate strain SR12(T) as Eubacterium aggregans sp. nov. The type strain is SR12(T) (= DSM 12183).  相似文献   

2.
An anaerobic, non-motile, rod shaped bacterium is described which cleaves the phenylether bonds of methoxylated aromatic substrates to give the corresponding hydroxy aromatic derivatives and mixed volatile fatty acids, chain length, C1, C2 and C4. The bacterium was isolated from an anaerobic digestor fed with contents from a wood fiber to alcohol fermentation plant, using anaerobic rolltube medium with ferulate as the carbon and energy source. Moles fatty acid produced per 100 mole of methoxyl group of aromatic substrate fermented were approximately: acetate, 14; butyrate, 18; and formate, 15. For the fermentation of equimolar amounts of methoxylated aromatic compounds, growth yields were proportional to the number of methoxylated groups per molecule, and the amount of cells per methoxyl group did not alter when phenylacrylate derivatives were used as substrates. The organism was unable to reduce the side-chain double bond of phenylacrylate derivatives. Coculture of the bacterium on ferulate with Methanospirillum hungatei, or Desulfovibrio in the presence of SO 4 = resulted in no nett production of formate, and small quantities of methane and sulfide were produced respectively. The isolate utilized glucose, fructose, and lactate, but not methanol or H2–CO2 as growth substrates. Lactate, butyrate, acetate, formate and small quantities of H2 were produced from glucose fermentation. No reduction of SO 4 = or NO 3 - occurred during fermentation of glucose or methoxylated aromatics and no growth occurred in the presence of oxygen.  相似文献   

3.
The coupling of growth of the o-demethylating bacterium, Clostridium methoxybenzovorans SR3, with a nitrate-reducing bacterium able to degrade aromatic compounds, Thauera sp. Cin3,4, allowed complete mineralization of poorly oxidizable methoxylated aromatic compounds such as vanillate, isovanillate, vanilline, anisate, ferulate and veratrate. C. methoxybenzovorans o-demethylated these aromatic compounds to their corresponding hydroxylated derivatives and fermented the side chains to acetate and butyrate. The hydroxylated compounds and the fermentation end-products in the C. methoxybenzovorans spent growth medium were then completely metabolized to CO2 on inoculation with the Thauera strain. Kinetic studies with veratrate indicated that C. methoxybenzovorans initially o-demethylated the substrate to vanillate and then further to protocatechuate together with the production of acetate and butyrate from the demethylated side chains. Protocatechuate, acetate and butyrate were then utilized as a carbon source by the Thauera strain aerobically or anaerobically in the presence of nitrate. The results therefore suggest that mono- or dimethoxylated aromatic compounds can be completely mineralized by coupling the growth of a fermentative bacterium with a nitrate-reducing bacterium, and a metabolic pathway for this is proposed.  相似文献   

4.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   

5.
6.
A new strictly anaerobic thermophilic multicellular filamentous bacterium (0.2–0.3 μm × >100 μm), designated GNS-1T, was isolated from a deep hot aquifer in France. It was non-motile, and stained Gram-negative. Optimal growth was observed at 65 °C, pH 7.0, and 2 g L−1 of NaCl. Strain GNS-1T was chemoorganotrophic fermenting ribose, glucose, galactose, arabinose, fructose, mannose, maltose, sucrose, xylose, raffinose, pyruvate, and xylan. Yeast extract was required for growth. The end products of glucose fermentation were lactate, acetate, CO2, and H2. The G + C content of the DNA was 57.6 mol%. Its closest phylogenetic relative was Bellilinea caldifistulae with 92.5% similarity. Based on phylogenetic, genotypic and phenotypic characteristics, strain GNS-1T (DSM 23592T, JCM 16980T) is proposed to be assigned to a novel species of a novel genus within the class Anaerolineae (subphylum I), phylum “Chloroflexi”, Thermanaerothrix daxensis gen. nov., sp. nov. The GenBank accession number is HM596746.  相似文献   

7.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

8.
The fermentative metabolism of Rhodospirillum rubrum (strain Ha, F1, S1) was studied after transfering the cells from aerobic to anaerobic dark culture conditions. Pyruvate was metabolized mainly to acetate and formate, and to a lesser extent to CO2 and propionate, by all strains. Therefore, pyruvate formate lyase would appear to be the characteristic key enzyme of the dark anaerobic fermentation metabolism in R. rubrum. Strain F1 and S1 metabolized the formate further to H2 and CO2. It is concluded that this cleavage was catalysed by a formate hydrogen lyase system. Strain Ha was unable to metabolize formate. The cleavage of formate and the synthesis of poly--hydroxy-butyric acid were increased by a low pH value (6.5). Fermentation equations and schemes of the pyruvate metabolism are discussed.  相似文献   

9.
Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4 +, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.  相似文献   

10.
We isolated a methanogenic strain, designated as strain TMA (=DSM 9195), from an enrichment culture inoculated with a Japanese paddy field soil. Strain TMA was Gram positive and strictly anaerobic. Cell shape was pseudosarcina-like, and cells were nonmotile. The strain was able to use methylamines, methanol, H2–CO2, and acetate as substrates for methanogenesis, but did not utilize formate. The optimum temperature and optimum pH were 30–37°C and 6.5–7.5 respectively. The G+C content of the DNA was 42.1 mol %. Strain TMA had DNA-DNA hybridization values of more than 80% with Methanosarcina mazeii S-6T (T = type strain). On the basis of phenotypic and genotypic characteristics, we identified strain TMA as M. mazeii. This is the first methylotrophic methanogen isolated from a paddy field soil and identified to the species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号