首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
该试验在玉米单作茬口、玉米-花生间作茬口(间作茬口)、花生单作茬口共3种茬口,以及0 kg P_2O_5·hm~(-2)(P_0)和180 kg P_2O_5·hm~(-2)(P_1) 2个磷水平下,研究了间作茬口与施磷对冬小麦分蘖、叶面积指数(LAI)、干物质积累、光合特性及产量的影响机制,为玉米花生间作与小麦-玉米复种轮作提供理论依据。结果表明:(1)间作茬口较玉米茬口显著提高了冬小麦有效分蘖数、LAI、净光合速率和干物质积累量,并提高了冬小麦旗叶的SPAD值、CO_2饱和点、光饱和点及最大净光合速率(P_(nmax))、表观量子效率(AQY)、羧化效率(CE)、最大羧化速率(V_(cmax))、最大RUBP再生的电子传递速率(J_(max))和最大磷酸丙糖利用速率(V_(TPU)),且CE、V_(cmax)、V_(TPU)的增幅均达到显著水平(P0.05),有效改善了冬小麦产量构成,显著提高籽粒产量(P0.05)。(2)间作茬口较花生茬口提高了冬小麦乳熟期的P_(nmax)、AQY、CE,增加了穗粒数和粒重,提高了产量。(3)与不施磷相比,施磷180 kg P_2O_5·hm~(-2)显著促进间作茬口冬小麦生长,显著提高冬小麦旗叶的SPAD值、P_(nmax)、AQY、CE、V_(cmax)、J_(max)、V_(TPU)和籽粒产量(P0.05)。研究发现,间作茬口较玉米茬口能有效增强冬小麦旗叶表观量子效率和CO_2羧化能力,显著提高小麦花后光合能力,促进冬小麦生长,从而增加穗粒数、粒重和籽粒产量,且间作茬口结合施磷180 kg P_2O_5·hm~(-2)效果更好。  相似文献   

2.
控制其他参数为经验常数,利用迭代方法对主要光合作用参数最大羧化速率(V_(c max))及最大电子传递速率(J_(max))进行不同数值组合,将得到的多组模拟结果的逐日总初级生产力(GPP)分别与东北帽儿山落叶阔叶林的通量观测数据进行比较,实现对小时步长BEPSHourly模型V_(c max)和J_(max)的参数优化.结果表明:对于东北温带落叶阔叶林,当V_(c max)为41.1μmol·m~(-2)·s~(-1)、J_(max)为82.8μmol·m~(-2)·s~(-1)时,模拟的2011年逐日GPP与观测数据比较的均方根误差(RMSE)最小,为1.10 g C·m~(-2)·d~(-1),R~2最高,为0.95.经过光合作用参数V_(c max)和J_(max)优化后,BEPSHourly模型能更好地模拟GPP的季节变化.  相似文献   

3.
利用低氧法(2% O_2)研究了大豆叶片光呼吸速率(R_p)对光强和CO_2浓度的响应。结果表明:当光合有效辐射强度(PAR)小于600μmol·m~(-2)·s~(-1)时,大豆叶片的R_p随光强的升高而几乎直线增加;当PAR约为1200μmol·m~(-2)·s~(-1)时,R_p达到最大值(12.69·mol CO_2·m~(-2)·s~(-1)),随后R_p随PAR的升高呈下降趋势;构建的光呼吸速率与光强的方程式拟合结果表明,大豆叶片最大光呼吸速率为13.42·mol CO_2·m~(-2)·s~(-1),其对应的光强为1207.74·mol·m~(-2)·s~(-1),该拟合值与实际测量值极为吻合(P0.05);当PAR一定(2000μmol·m~(-2)·s~(-1))时,随着CO_2浓度的增加(0~1200μmol·mol~(-1)),大豆叶片的R_p呈先升高后下降变化,在600μmol·mol~(-1)时达到最大值(9.97·mol CO_2·m~(-2)·s~(-1));构建的光呼吸速率与CO_2浓度的方程式拟合结果表明,大豆叶片最大光呼吸速率为10.21·mol CO_2·m~(-2)·s~(-1),其对应的外界CO_2浓度为625.74·mol·mol~(-1)。该拟合值也与实际测量值极为吻合(P"0.05)。本文所构建的方程式可较好地拟合光呼吸速率对不同光强和不同CO_2浓度的响应,这对定量研究光呼吸提供了强有力的手段。  相似文献   

4.
为了研究引进树种对干热河谷环境的适应性,以生长于干热河谷野外环境中的新银合欢(Leucaena leucocephala)为研究对象,研究分析了其在湿季(7月)和干季(11月)的光合生理特征和叶绿素荧光特征。结果表明:(1)在P_n-C_i响应曲线中,当C_i150μmol/mol,干季的净光合速率(Net photosynthetic rate,P_n)高于湿季,而当C_i150μmol/mol,干季的P_n低于湿季;(2)相较于湿季,干季的初始羧化效率(Initial carboxylation efficiency,CE)、光合能力(Photosynthetic capacity,A_(max))、CO_2补偿点(CO_2 compensation point,Γ)、光呼吸速率(Photorespiration rate,R_p)、最大羧化速率(Maximum carboxylation rate,V_(cmax))、最大电子传递速率(Maximum electron transport rate,J_(max))、磷酸丙糖利用率(Triose phosphates utilization rate,TPU)、J_(max)/V_(cmax)、气孔限制值(Stomatal limitation,L_s)和叶片饱和水汽压差(Vapor pressure deficit,VPD)均显著下降(P0.05),而暗呼吸速率(Dark respiration rate,R_d)、胞间CO_2浓度(Intercellular CO_2 concentration,C_i)、气孔导度(Stomatal conductance,G_s)、蒸腾速率(Transpiration rate,T_r)、饱和光下最大净光合速率(Light-saturated net photosynthetic rate,P_(nmax))和水分利用效率(Water use efficiency,WUE)则显著上升(P0.05);(3)干季的PSII实际光化学效率(Actual photochemical efficiency of PSII,Ф_(PSII)),光化学猝灭系数(Photochemical fluorescence quenching,qP),电子传递效率(Electron transport rate,ETR)较湿季出现显著下降(P0.05),非光化学猝灭系数(Non-photochemical fluorescence quenching,NPQ)显著增加(P0.05);(4)叶绿素荧光参数的Ф_(PSII)、NPQ、ETR与各光合生理指标相关性较强。在干热河谷地区,气孔限制是影响新银合欢湿季光合速率的主要因素;而非气孔限制是影响其干季光合速率的主要因素。  相似文献   

5.
苋菜的光合特性   总被引:4,自引:0,他引:4  
孙谷畴   《广西植物》1988,(3):279-284
宽菜Amaranthus cruentus cv.生长在调控的温室条件。在光强0至800μmol.m~(-2)S~(-1),光合速率(PN,μmol.CO_2m~(-2)、s~(-1))随光强(PFD,μmol、m~(-2)、s~(-1))增高而增大,其关系为PN=56.82 PFD×10~(-3)—2.13。光补偿点为60μmol.m~(-2)、s~(-1)。叶片在1400 μmol.m~(-2)、s~(-1)达到光合光饱和点。在叶温35℃,叶片/空气水蒸汽压陡度20 m Pa、Pa~(-1)和外界CO_2浓度340μ1、1~(-1),光饱和光合速率为51.63±4.90μ mol.CO_2、m~(-2)、S~(-1)。在光强0至600μmol.m~(-2)、s~(-1),气孔传道率随光强增高而增大。光强高于600μmol.m~(-2)、s~(-1),气孔传道率变化较小。细胞间CO_2浓度为120μ1.1~(-1)由于细胞间CO_2浓度在光合速率——CO_2关系曲线的转折点,可能表明光合作用不受气孔限制。结果表明,苋菜适于高光强环境生长,在干旱条件下具有高的光合速率。  相似文献   

6.
报道了美国生物圈二号内生长在高CO_2浓度下(>2200μmol·mol~(-1))4.5年后的5种热带雨林植物和5种荒漠植物气孔导度、蒸腾速率和水分利用效率的变化。结果表明:热带雨林植物在CO_2浓度为350~400μmol·mol~(-1)时的气孔导度、蒸腾速率和水分利用效率分别为:(127.4±65.6)mmol·m~(-2)·s~(-1)、(2.04±0.61)mmol·m~(-2)·s~(-1)和(2.90±0.55)μmol CO_2·mmol~(-1) H_2O,而在700~820μmol·mol~(-1)时为(61.3±30.5)mmol·m~(-2)·s~(-1)、(1.54±0.65)mmol·m~(-2)·s~(-1)和(8.45±2.71)μmol CO_2·mmol~(-1) H_2O;荒漠植物气孔导度和蒸腾速率则分别由CO_2 320~400μmol·mol~(-1)时的(142.8±94.6)和(2.09±0.71)下降到820~850μmol·mol~(-1)时的(57.7±35.8)和(1.36±0.52)mmol·m~(-2)·s~(-1),水分利用效率由(4.69±1.39)上升到(9.68±1.61)μmol CO_2·mmol~(-1) H_20。在低CO_2浓度时植物的气孔导度、蒸腾速率和水分利用效率受光照强度的影响较高CO_2浓度时明显,一般雨林植物三项指标在光照强度为500μmol·m~(-2)·s~(-1)时达到饱和,而荒漠植物在1000μmol·m~(-2)·s~(-1)时达到饱和。不同植物中,以荒漠C_3植物粉蓝烟草(Nicotiana glau-ca Grah.)的气孔导度、蒸腾速率和水分利用效率  相似文献   

7.
为探讨森林生态系统植被、土壤等不同组分与大气CO_2交换特点,利用中型同化箱(40cm×40cm×2Ocm)及红外CO_2分析仪装置对北京山区典型暖温带森林生态系统辽东栎(Quercus liaotungensisKoidz.)林草本层净光合作用、土壤释放CO_2及林外(高出林冠2m)与林内(低于林冠2m)大气CO_2变化进行测定。结果表明:夏季及秋季大气CO_2浓度分别为(323±10)μmol·mol~(-1)和(330±1)μmol·mol~(-1);在一天内连续24h的测定中,大气与林内CO_2浓度的差值最大时可分别达-46和-61μmol·mol~(-1)。夏季草本层净光合强度为(2.59±1.05)μmol CO_2·m~(-2)·s~(-1),是秋季((1.31±0.39)μmol CO_2·m~(-2)·s~(-1))的2倍;夏季土壤呼吸释放CO_2的强度明显高于秋季,分别为(5.18±0.75)μmol CO_2·m~(-2)·s~(-1)和(1.96±0.57)μmol CO_2·m~(-2)·s~(-1)。土壤释放CO_2强度与地面温度之间存在显著相关,其关系式为Y=-0.8642 0.3101X(r=0.7164,P<0.001,n=117)。大气CO_2浓度的低值及草本层光合强度高值约出现在14:00左右;而在夜间土壤释放CO_2强度增加,表现为大气CO_2浓度升高。  相似文献   

8.
孙谷畴   《广西植物》1987,(3):239-243
亚热带季雨林林下阴生植物罗伞(Ardisia quinquegona)叶片的气体交换速率(PN.μmol.m~(-2),s~(-1))随光强(PFD,μmol,m~(-2),s~(-1))增高而增大。在光强低于80μmol,m~(-2),s~(-1),PN=29.21PFD×10~(-3)+0.36。在光强150μmol,m~(-2),s~(-1)对出现气体交换的光饱和现象。在低光强下,气孔传导率(G,m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=265.6 PFD+4.6。在低光强下。开阔地的阳生灌木桃金娘(Rhodmyrtus tomentosa)的气体交换速率和气孔传导率与光强关系曲线的直线部分斜率皆较罗伞的低,在红光上,罗伞叶片气体交换速率(μmol,m~(-2),s~(-1)与光强(μmol,m~(-2),s~(-1)的关系为PN=32.4 PFD×10~(-3)-0.04。气孔传导率(m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=339.08 PFD+7.37。同时气体交换速率的饱和红光光强亦较白光的高。在蓝光光强低时,气体交换速率(μmol,m~(-2),s~(-1))与光强(μmol,m~(-2),s~(-1))的关系为PN=13.54 PFD×10~(-3)—0.17,而气孔传导率(m mol,m~(-2),s~(-1))与光强(mμmol,m~(-2),s~(-1))的关系为G=80.5 PFD+4.35。在低的蓝光下,体交换速率和气孔传导率与光强关系曲线的直线部分斜率显著较在白光和红光下的低。罗伞叶片气体交换对红光的反应敏感。  相似文献   

9.
为揭示水生植物对富营养化河涌底泥的生理生态适应性及其净化能力,选取11种水生挺水植物(包含6种本土植物和5种外来植物)结合河涌底泥进行试验。通过测定试验一年后植物叶片的光饱和光合速率(P_(sat),μmol m~(-2)s~(-1))、比叶面积(SLA,m~2/kg)、总氮含量(TN,mg/g)和光合作用氮利用效率(PNUE,μmol mol~(-1)s~(-1)),比较分析物种间生理与结构特性及其相互关系。结果表明:种间的SLA层次比较分明,最高的大叶皇冠草(20.31±0.30)与最低的鸢尾草(7.22±0.31)相差近3倍。种间的P_(sat)在(3.76±0.57)(鸢尾草)—(21.53±1.20)(水罂粟)之间,水罂粟比鸢尾草高81.79%。种间的PNUE从42.53±8.42(鸢尾草)至655.8±100.93(天使花),美人蕉、水罂粟、风车草和香蒲的PNUE值均较高,且差异不明显(P0.05),这些植物的PNUE显著高于较低PNUE的种类(包括菖蒲、蓝花草和鸢尾草)(P0.05)。种间SLA分别与PNUE和P_(sat)(μmol kg~(-1)s~(-1))呈显著的正相关,SLA和P_(sat)(μmol m~(-2)s~(-1))分别与TN(mmol/m~2)呈显著负相关(P0.05)。外来植物类群的PNUE、SLA、P_(sat)和TN均显著高于本地植物类群(T-test,P0.05),说明外来水生植物在养分富集化环境下能更有效地利用资源,具有潜在的高生长速率和种间竞争优势。  相似文献   

10.
荔枝的光合特性   总被引:4,自引:1,他引:3  
在低光强(0至0.15m mol m~(-2)s~(-1))下,荔枝叶子的光合速率随光入射量子通量的增高而增大。在光强0.7m mol m~(-2)s~(-1)时光合速率为1.76μmol m~(-2)s~(-1)。光合作用的光补偿点约为0.02 m mol m~(-2)s~(-1)光量子。荔技叶子具有低的气孔对水分传导率。气孔对水分传导率和蒸腾速率在低光强时随入射量子通量增高而增大:而细胞间CO_2浓度随光强增高而下降。在光强高于0.2m mol m~(-2) s~(-1)光量子时,细胞间CO_2浓度变化较少。在低光强时,叶子的水分利用效率(光合/蒸腾)随光强增高而增大。在光强高于0.2m mol m~(-2) s~(-1)光量子时,水分利用效率明显降低。荔枝叶子的最适光合作用叶温为22-26℃。可能表明在华南夏季中午的高温限制荔枝的田间光合作用。外界CO_2浓度增高相应增高细胞间CO_2浓度。当细胞间CO_2浓度约低于230μ1.1~(-1)时,光合速率随细胞间CO_2浓度增高而增大。在更高的细胞间CO_2浓度对,光合速率变化则较少。荔枝叶子光合速率对叶子/空气水蒸汽压陡度的变化响应不敏感。气孔对水分传导率和细胞间CO_2浓度随叶子/空气水蒸汽压陡度增大略有降低。  相似文献   

11.
唐敬超  史作民  罗达  刘世荣 《生态学报》2017,37(22):7493-7502
以适生在我国南亚热带地区的珍贵树种灰木莲(Manglietia glauca)为研究对象,对其幼苗叶片的光合氮利用效率(PNUE)及影响因素在不同遮荫条件下的适应情况进行了研究,以期为这种珍贵树种的栽培育苗,以及人工纯林的改造提供科学理论依据。结果表明:60%遮荫条件下生长的灰木莲幼苗叶片光饱和净光合速率最高(Amax,6.03μmol m~(-2)s~(-1)),主要是由于60%遮荫条件下的灰木莲幼苗叶片具有最高的最大羧化速率(V_(cmax),32.93μmol m~(-2)s~(-1))及较高的最大电子传递速率(J_(max),61.83μmol m~(-2)s~(-1))。不同遮荫处理下的灰木莲幼苗叶片PNUE并没有显著差异,这是因为其在不同遮荫条件下的单位面积叶片氮含量(N_(area))及A_(max)会同步变化,核心是其分配到1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)及生物力能学组分的氮比例(PR及PB)在不同遮荫处理下并没有显著差异。灰木莲幼苗叶片光合系统中捕光组分氮分配比例(PL)会随着遮荫程度的增加而显著增大,三个处理下的PL大小顺序为:90%遮荫(0.296 g/g)60%遮荫(0.216 g/g)全光(0.132 g/g),但这部分氮比例的提高并不会提高叶片的PNUE。灰木莲幼苗叶片捕光组分氮并不与细胞壁氮、Rubisco氮或者生物力能学组分氮形成协同变化,其随着遮荫程度的增加而增大的氮比例来源于其他氮库,这种变化是多因子综合作用的结果。因此在培育灰木莲幼苗时要进行适度遮荫,进行纯林改造时开出的林窗也不宜过大,要选择较为荫蔽的林下环境进行栽植;在遮荫的同时也要适度增施氮肥,以补充因捕光组分氮比例提高而造成的叶片氮消耗。  相似文献   

12.
以科尔沁沙质草地为研究对象,利用开路涡度相关系统和LI-8150土壤呼吸自动观测系统,分析了生长季生态系统二氧化碳(CO_2)净交换量(NEE)的变化特征,土壤呼吸(R_s)对生态系统呼吸(R_(eco))的贡献率,以及生态系统总初级生产力(GPP)的大小。结果表明:生长季NEE存在明显的月均日变化特征,总体呈单峰型,其中7月的日变化最为明显,NEE月均日最大吸收速率(-5.62μmol·m~(-2)·s~(-1))和最大释放速率(3.14μmol·m~(-2)·s~(-1))均出现在7月份;生长季内生态系统总体表现为碳汇,固碳量为25.85 g C·m~(-2);R_s对R_(eco)的贡献率为78.39%,R_(eco)对GPP的贡献率为90.62%,生长季内GPP总累积量为275.51g C·m~(-2)。  相似文献   

13.
沙地赤松光合及叶绿素a快相荧光动力学特性   总被引:4,自引:0,他引:4  
孟鹏  安宇宁  白雪峰 《生态学报》2016,36(11):3469-3478
沙地赤松在科尔沁沙地南缘区已有50a的引种历史,但对其生长表现还知之甚少,对其光合生理还一无所知。为深入了解其光合生理特性及机理,以同龄樟子松为对照,对沙地赤松成熟林分生长指标以及光合和叶绿素a快相荧光动力学特性进行了研究。结果表明:与樟子松相比,成林阶段沙地赤松具有较大的生长量、生物量,这与其较强的光合作用密切相关。沙地赤松最大净光合速率P_(max)(10.376μmol CO_2m~(-2)s~(-1))和平均净光合速率P_n(4.902μmol CO_2m~(-2)s~(-1))均高于樟子松,且具有较高的光饱和点LSP和较低的光补偿点LCP。暗呼吸速率(R_d)较低,导致其光合效率(P_(max)/R_d)较高。JIP-测定揭示了沙地赤松较强光合作用的内在机制,在O相至P相范围内,其相对可变荧光值(V_t)总体较低,说明其在电子传递过程中耗散能量较低,而用于光化学的能量较高。比活性参数进一步表明沙地赤松单位激发态面积反应中心数目(RC/CSo、RC/CSm)、吸收的光量(ABS/CSo、ABS/CSm)、被反应中心捕获的光量(TRo/CSo)、用于电子传递的能量均较高(ETo/CSo),也因此具有较高的性能指数,其PI_((ABS/CSo/CSm))分别是樟子松的1.42、1.65和1.63倍。显然在沙地环境下沙地赤松生长表现和光合性能优于樟子松,研究结果为扩大该树种在沙地上的引种栽培提供了初步的理论依据。  相似文献   

14.
糯米条具有较强的观赏性,并逐渐应用于园林绿化中.本文主要对糯米条形态特征进行概述,同时对其生理生态指标进行了测定和总结.研究结果表明,糯米条叶片从枝先端开始的第5片就已完全成熟,其叶绿素含量稳定;利用Licor6400便携式光合仪测定糯米条的光补偿点为12 μmol·m~(-2)·s~(-1),光饱和点为356 μmol·m~(-2)·s~(-1),最大的光合速率为4.856μmol·m~(-2)·s~(-1),呼吸速率为0.401μmol·m~(-2)·s~(-1),这些数据表明糯米条为阳性植物;测定糯米条的CO_2补偿点为92.8μmol/mol,CO_2饱和点为822.4μmol/mol.叶绿素荧光参数变化数据表明,糯米条能适应37℃的强光、高温环境.根据实验结果,我们建议糯米条在园林中的主要应用形式为地被、绿篱、攀扎整形和球形观赏.  相似文献   

15.
为探究自然条件下中熟籼稻初穗期剑叶光合作用的气孔与非气孔限制特征,利用LI-6400光合仪测定了4个水稻品种(恢复系R7-35,不育系井大3S,杂交F_1代井大3S/R7-35和对照品种9311)的气体交换数据,获得了它们的净光合速率、气孔导度、胞间CO_2浓度和气孔限制值对光的响应曲线。结果表明:与最大净光合速率相对应的饱和光强(I_(sat))分别为1500、1800、1200和1200μmol·m~(-2)·s~(-1);除井大3S/R7-35外,其他3个水稻品种的气孔导度随光强的增加而非线性增加,由此可知,在较高光强处限制这4个水稻叶片光合作用的因素是非气孔限制。与最小胞间CO_2浓度(C_i)相对应的光强分别为1600、1600、1400和1600μmol·m~(-2)·s~(-1),与最大气孔限制值(L_s)相对应的饱和光强分别为1400、1200、1400和600μmol·m~(-2)·s~(-1)。根据Ci降低和Ls升高作为判断叶片光合速率降低的主要原因是气孔因素的判据标准,品种9311则在光强小于1600μmol·m~(-2)·s~(-1)时,Ci随光强的增加而降低,在光强小于600μmol·m~(-2)·s~(-1)时,Ls随光强的增加而升高,但该品种在光强小于1200μmol·m~(-2)·s~(-1)时,其光合能力随光强的增加而非线性增加。这个结果与以Ci降低和Ls升高作为判断准则相互矛盾。为此,提出用植物叶片是否存在I_(sat)作为判断光合速率下降的非气孔限制因素准则,用气孔导度是否存在最大值作为植物叶片的气孔限制因素准则。  相似文献   

16.
温带森林不同演替阶段下的土壤CO2排放通量昼间变化   总被引:2,自引:0,他引:2  
采用时空替代法,在长白山北坡分别选取了红松针阔叶混交林演替序列的5个不同阶段:草地、灌木林(幼龄林)地、白桦林地、阔叶杂木林地和红松阔叶林地,进行土壤CO_2排放通量昼间变化野外同步观测研究,旨在揭示温带森林不同演替阶段下的土壤呼吸CO_2排放过程的差异,探究其与温度、湿度、土壤理化性质等环境因子的关系。结果表明:(1)温带森林不同演替阶段下的土壤CO_2排放通量具有统一性,均为大气CO_2的源,这种统一性确保了小的时段(如昼间)观测能通过换算,实现CO_2排放量的估算。(2)CO_2排放通量的昼间排放都呈现出明显的单峰型,峰值在13:00—15:00左右,草地和灌木林地的峰值大概在13:00左右,明显提前于白桦林地、阔叶杂木林地和红松阔叶林地(14:00—15:00左右)。红松阔叶林地的土壤呼吸有明显的滞后性特征,峰值在15:00左右,比其他几个样地明显推迟。(3)土壤CO_2排放通量平均值由低到高排列依次为草地(2.760μmol m~(-2)s~(-1))、灌木林地(2.854μmol m~(-2)s~(-1))、白桦林地(3.048μmol m~(-2)s~(-1))、阔叶杂木林地(3.696μmol m~(-2)s~(-1))、红松阔叶林地(4.61μmol m~(-2)s~(-1))。随着温带森林演替的正向进行,土壤CO_2排放通量依次增大,次序为草地灌木林地白桦林地阔叶杂木林地红松阔叶林地。(4)环境因子中,0—5 cm土壤温度与土壤CO_2排放通量相关系数最高,土壤温度监测对土壤CO_2排放量的估算作用明显。  相似文献   

17.
荒漠-绿洲区不同土地利用类型土壤呼吸对温湿度的响应   总被引:1,自引:0,他引:1  
明确荒漠-绿洲过渡区土壤呼吸及其温湿度敏感性特征,对了解干旱、半干旱地区土壤碳循环有重要意义。本研究采用LI-8100土壤呼吸观测系统对河西走廊典型荒漠-绿洲过渡区荒漠梭梭林地、绿洲农田、人工杨树林地3种不同土地利用类型的土壤呼吸进行1年的观测。结果表明,3种土地利用类型全年平均土壤呼吸为人工杨树林地(2.20μmol CO_2·m~(-2)·s~(-1))绿洲农田(1.61μmol CO_2·m~(-2)·s~(-1))荒漠梭梭林地(0.40μmol CO_2·m~(-2)·s~(-1)),造成不同土地利用类型土壤呼吸显著差异的原因主要与土壤有机碳含量有关。Lloyd-Taylor指数模型能够较好拟合土壤呼吸季节性变化与温度的关系。3种不同土地利用类型的土壤呼吸均在低温时(非生长季)较高温时(生长季)对温度变化更敏感。在全年尺度上,不同土地利用类型的土壤呼吸与土壤温度呈极显著正相关(P0.01);荒漠梭梭林地、绿洲农田的土壤呼吸与土壤水分呈极显著正相关(P0.01),人工杨树林地土壤水分低于6%时和高于6%时,土壤呼吸与土壤水分分别呈极显著正相关(P0.01)和显著负相关(P0.05)。本研究结果为干旱区绿洲化过程土壤碳循环的研究提供了基础数据。  相似文献   

18.
为探明干旱区栽培黑果枸杞叶片光合-CO_2响应特征及果实药效成分对施氮量的响应,该试验设置5个不同施氮(尿素)水平处理(0、50、100、150和200 g·株~(-1)),测定各处理植株在不同CO_2浓度下叶片净光合速率(P_n)、蒸腾速率(T_r)、气孔导度(G_s)、水分利用率(WUE)、胞间CO_2浓度(C_i)和果实中总多糖、总黄酮、花色苷、原花青素的含量,并通过直角双曲线修正模型拟合得到羧化速率(η)、最大净光合速率(P_(nmax))、光呼吸速率(R_p)、CO_2补偿点(CCP)和CO_2饱和点(CSP)等参数。结果表明:(1)适量施氮对黑果枸杞叶片η、P_(nmax)、R_p、CCP和CSP有明显的影响。当施氮量为100 g·株~(-1)时,叶片η和R_p最大、CCP最小;施氮量为100~150 g·株~(-1)时,叶片CSP最大;施氮量为150~200 g·株~(-1)时,叶片P_(nmax)最大。(2)适量施氮对黑果枸杞果实中主要药效成分含量有明显的影响。施氮量为200 g·株~(-1)时,果实总多糖含量最大;施氮量为150~200 g·株~(-1)时,总黄酮含量最大;施氮量为50~150 g·株~(-1)时,花色苷含量最大;施氮量为100~200 g·株~(-1)时原花青素含量最大。综合分析发现,干旱区栽培黑果枸杞叶片η、R_p、CCP、CSP及果实多糖和总黄酮含量以每年施氮100~150 g·株~(-1)时最佳,其叶片P_(nmax)和果实花色苷和原花青素含量以每年施氮150~200 g·株~(-1)时最佳。  相似文献   

19.
西鄂尔多斯4种荒漠植物光合作用特征与差异性   总被引:1,自引:0,他引:1  
植物对光能的高效吸收、传递和转换机理是光合作用的核心。为了厘清西鄂尔多斯地区4种荒漠植物光合生理生态适应性和生境适宜性,运用LI-6800光合作用测定系统对四合木(Tetraena mongolica)、霸王(Sarcozygium xanthoxylon)、沙冬青(Ammopiptanthus mongolicus)和白刺(Nitraria tangutorum)进行光合作用日变化进行了测定。研究结果表明:(1) 4种荒漠植物的光合作用日变化的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO_2浓度(Ci)均表现出明显的分异;(2)净光合速率均呈"双峰"曲线的变化趋势,4种荒漠植物的净光合速率(Pn)依次排序为四合木(4.37μmol m~(-2) s~(-1))霸王(3.58μmol m~(-2) s~(-1))沙冬青(2.63μmol m~(-2) s~(-1))和白刺(2.26μmol m~(-2) s~(-1))。说明四合木和近缘种霸王比其他二种荒漠植物具有较强的光合生理生态适应性与生境适宜性;(3)从影响光合作用的有关生理生态因子来看,净光合速率与气孔导度与蒸腾速率、水分利用效率呈现明显的正相关性,与微气象因子大气相对湿度(RH)的相关性不明显;(4)水分因子是限制4种荒漠植物生长的重要因素之一。该研究以期为我国西北荒漠区珍稀濒危植物的保护提供案例借鉴与理论依据。  相似文献   

20.
土壤碳通量是全年性的过程,非生长季土壤碳通量是陆地碳循环的重要组成部分。针对非生长季地上地下CO_2动态变化研究相对缺乏这一现象,对黄河三角洲湿地不同深度土壤CO_2浓度及温度动态变化进行了连续3个月的监测;为揭示该地区地表CO_2通量与地下CO_2浓度变化之间的关系,对地表CO_2通量、土壤CO_2浓度及温度进行了两次同步测定。结果表明:随着土层深度的增加,土壤CO_2浓度显著升高;相同深度下,秋季的土壤CO_2浓度明显高于冬季。地表CO_2通量和地表温度具有相似的日变化规律,二者呈极显著正相关关系,土壤呼吸温度敏感性系数(Q10)为3.49~3.74。地表CO_2通量与土壤CO_2浓度、土壤温度均存在极显著线性或指数关系,利用其经验模型对黄河三角洲湿地土壤秋冬季碳通量进行了估算,通过比较发现,所有模型拟合结果在季节变化上相近:最大值为0.44~0.57μmol·m~(-2)·s~(-1),最小值为-0.18~0.01μmol·m~(-2)·s~(-1),平均值为0.09~0.12μmol·m~(-2)·s~(-1)。本研究揭示了非生长季土壤碳的转化过程对滨海湿地碳循环的潜在影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号