首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   2篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
为探究自然条件下中熟籼稻初穗期剑叶光合作用的气孔与非气孔限制特征,利用LI-6400光合仪测定了4个水稻品种(恢复系R7-35,不育系井大3S,杂交F_1代井大3S/R7-35和对照品种9311)的气体交换数据,获得了它们的净光合速率、气孔导度、胞间CO_2浓度和气孔限制值对光的响应曲线。结果表明:与最大净光合速率相对应的饱和光强(I_(sat))分别为1500、1800、1200和1200μmol·m~(-2)·s~(-1);除井大3S/R7-35外,其他3个水稻品种的气孔导度随光强的增加而非线性增加,由此可知,在较高光强处限制这4个水稻叶片光合作用的因素是非气孔限制。与最小胞间CO_2浓度(C_i)相对应的光强分别为1600、1600、1400和1600μmol·m~(-2)·s~(-1),与最大气孔限制值(L_s)相对应的饱和光强分别为1400、1200、1400和600μmol·m~(-2)·s~(-1)。根据Ci降低和Ls升高作为判断叶片光合速率降低的主要原因是气孔因素的判据标准,品种9311则在光强小于1600μmol·m~(-2)·s~(-1)时,Ci随光强的增加而降低,在光强小于600μmol·m~(-2)·s~(-1)时,Ls随光强的增加而升高,但该品种在光强小于1200μmol·m~(-2)·s~(-1)时,其光合能力随光强的增加而非线性增加。这个结果与以Ci降低和Ls升高作为判断准则相互矛盾。为此,提出用植物叶片是否存在I_(sat)作为判断光合速率下降的非气孔限制因素准则,用气孔导度是否存在最大值作为植物叶片的气孔限制因素准则。  相似文献   
2.
构建一个普适性的植物叶片气孔导度(gs)对CO2浓度响应(gs-Ca)的模型, 对定量研究植物叶片gs对CO2浓度的响应变化尤为必要。该研究运用便携式光合仪(LI-6400)测量了大豆(Glycine max)和小麦(Triticum aestivum)光合作用对CO2的响应曲线(An-Ca), 在比较传统的Michaelis-Menten模型(M-M模型)和叶子飘构建的CO2响应模型拟合大豆和小麦An-Ca效果的基础上, 构建了gs-Ca响应新模型。然后用新构建的模型拟合大豆和小麦的gs-Ca曲线, 并将拟合结果与传统模型的拟合结果, 以及与其对应的观测数据进行比较, 以判断所构建模型是否合理。结果显示: 叶子飘构建的An-Ca模型可较好地拟合大豆和小麦的An-Ca曲线, 确定系数(R2)均高达0.999。M-M模型拟合大豆和小麦的An-Ca曲线时的R2虽然也较高, 但在较高CO2浓度时的拟合曲线偏离观测曲线。因此, 基于叶子飘的An-Ca模型构建gs-Ca模型更为可行。新构建的gs-Ca模型可较好地拟合大豆和小麦的gs-Ca曲线, R2分别为0.995和0.994, 而且还可以直接给出最大气孔导度(gs-max)、最小气孔导度(gs-min), 以及与gs-min相对应的CO2浓度值(Cs-min)。拟合得到大豆和小麦的gs-max分别为0.686和0.481 mol·m-2·s-1, 与其对应的观测值(分别为0.666和0.471 mol·m-2·s-1)之间均不存在显著差异; 同样, 拟合得到的大豆和小麦的gs-min分别为0.271和0.297 mol·m-2·s-1, 与其对应的观测值(分别为0.279和0.293 mol·m-2·s-1)之间也均不存在显著差异; 此外, 新构建的gs-Ca模型给出大豆和小麦的Cs-min值分别为741.45和1 112.43 μmol·mol -1, 与其对应的观测值(732.78和1 200.34 μmol·mol -1)也不存在显著差异。由此可见, 该研究新构建的gs-Ca模型可作为定量研究植物叶片气孔导度对CO2浓度变化的有效数学工具。  相似文献   
3.
光合作用对光的响应模型是研究植物在不同环境条件下光合特性的有力数学工具,可为定量描述植物光合速率对光合有效辐射的响应提供理论依据。本文基于植物光合作用对光响应经验模型的常用数学表达式特征,综述了这些模型的优势及其在实际应用中可能遇到的问题。在此基础上探讨了光合作用对光响应机理模型在描述植物的原初光反应以及光合生理生态方面的优势,并对该模型的发展进行了展望。光合作用主要由原初反应、同化力形成和碳同化构成,任何一个过程的变化均可直接影响植物的光化学效率和碳同化能力。原初反应主要涉及光能吸收、激子共振传递、量子能级跃迁和退激发等与光能吸收传递相联系的、纯粹的物理过程。光合作用对光响应经验模型难以解释植物的非光化学淬灭(NPQ)随光强的增加一直非线性增加,也难以回答植物的捕光色素分子吸收过量的光能且不能及时地用于光化学反应时,单线态叶绿素分子的寿命将延长等现象。与此同时,光合作用对光响应机理模型拟合得到的参数不仅可以反映植物的原初光反应特征,还可以描述植物捕光色素分子的物理特性,如处于激发态的捕光色素分子数(Nk)、捕光色素分子的有效光能吸收截面(σik  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号