首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
遗传密码子研究进展   总被引:2,自引:0,他引:2  
作为生命信息的基本遗传单位,基因组遗传密码的破译对于人们加深对生命本质的认识具有重要的理论价值和现实意义。目前,遗传密码子的研究重心已由遗传密码子的破译及反常密码子的发现转入到遗传密码子的起源与进化及扩张等研究。遗传密码子的起源与进化是当今基因组学研究的热点命题之一,相关的学说、假设层出不穷,但尚未取得实质性突破。另一方面,无义密码子的再定义及遗传密码的扩张等研究却极大的丰富和发展了遗传密码子的科学内涵,推动了生命科学研究的发展。文章综述了遗传密码子的多态性、起源与进化、无义密码子的再定义及遗传密码的扩张等方面的研究进展,并就其应用价值作了评述,期待为其在基因组学、医学等相关领域的应用研究提供参考。  相似文献   

2.
肖景发  于军 《中国科学C辑》2009,39(8):717-726
根据DNA核苷酸组分的动态变化规律将遗传密码的传统排列按密码子对GC和嘌呤含量的敏感性进行了重排.新密码表可划分为2个半区(或1/2区)和4个四分区(或1/4区).就原核生物基因组而言,当GC含量增加时,物种蛋白质组所含的氨基酸倾向于使用GC富集区和嘌呤不敏感半区所编码的氨基酸,它们均使用四重简并密码,对DNA序列的突变具有相对鲁棒性(Robustness).当GC含量降低时,大多数密码子处于AU富集区和嘌呤敏感半区,这个区域编码的氨基酸具有物理化学性质的多样性.因为当密码子第三位核苷酸(CP3)在嘌呤和嘧啶之间发生转换时,密码子所编码的氨基酸也倾向于发生变化.关于遗传密码的进化存在多种假说,包括凝固事件假说、共进化假说和立体化学假说等,每种假说均试图解释遗传密码所表现出来的某些化学和生物学规律.基于遗传密码的物理化学性质、基因组变异的规律和相关的生物学假说,本研究提出了遗传密码分步进化假说(The Stepwise Evolution Hypothesis for the Genetic Code).在人们推断的最原始的RNA世界里,原初(Primordial)遗传密码从只能识别嘌呤和嘧啶开始,编码一个或两个简单而功能明确的氨基酸.由于胞嘧啶C的化学不稳定性,最初形成的遗传密码应该仅仅由腺嘌呤A和尿嘧啶U来编码,却可得到一组7个多元化的氨基酸.随着生命复杂性的增加,鸟嘌呤G从主载操作信号的功能中释放出来,再伴随着C的引入,使遗传密码逐步扩展到12,15和20个氨基酸,最终完成全部进化步骤.遗传密码的进化过程同时也伴随以蛋白质为主体的分子机制和细胞过程的进化,包括氨酰tRNA合成酶(AARS)从初始翻译机器上的脱离、DNA作为信息载体而取代RNA以及AARS和tRNA共进化等基本过程.分子机制和细胞过程是生命的基本组成元件,它们不但自己不断地趋于完善,也促使生命体走?  相似文献   

3.
作为生命信息的基本遗传单位,基因组遗传密码的破译对于人们加深对生命本质的认识具有重要的理论价值和现实意义.目前,遗传密码子的研究重心已由遗传密码子的破译及反常密码子的发现转入到遗传密码子的起源与进化及扩张等研究.遗传密码子的起源与进化是当今基因组学研究的热点命题之一,相关的学说、假设层出不穷,但尚未取得实质性突破.另一方面,无义密码子的再定义及遗传密码的扩张等研究却极大的丰富和发展了遗传密码子的科学内涵,推动了生命科学研究的发展.文章综述了遗传密码子的多态性、起源与进化、无义密码子的再定义及遗传密码的扩张等方面的研究进展,并就其应用价值作了评述,期待为其在基因组学、医学等相关领域的应用研究提供参考.  相似文献   

4.
若把信使RNA(mRNA)为不同氨基酸的编码称为第一套遗传密码,或经典的遗传密码,这里把以氨酰转移RNA(tRNA)合成酶为媒介,使一种氨基酸与适当的tRNA分子偶联的遗传密码叫做第二套遗传密码。人们早就发现在tRNA分子中,识别氨基酸的位点不都取决于反密码子,但长期以来没有破译氨基酸与tRNA之间的密码关系。最近美国麻省理工学院的Hou,Y—M和Schimmel,P首次发现,大肠杆菌丙氨酸tRNA中的G_3U_(70)单一碱基对是决定接受丙氨酸的密码。但它并不像第一套遗传密码中的  相似文献   

5.
遗传密码的高维空间对称性   总被引:3,自引:2,他引:1  
对称性是由均衡比例产生的匀称美。对称性和对称破缺在自然界和生命现象中普遍存在。20种氨基酸和终止码共有64个遗传密码子,组成一个6维的编码空间。遗传密码空间以对称轴将空间分成对称的两大部分:嘌呤空间和嘧啶空间。遗传密码子的简并以对称轴为参考轴,呈平行排列。高简并度氨基酸(6,4,3,简并度)和低筒并度氨基酸(1,2简并度)的简并子空间近似呈周期性的双方错方式排列。遗传密码的简并与4种核苷酸的二进制数字编码,具有密切的关系。经过分析,可得出遗传密码的连通性λλ简并法则:“除丝氨酸的密码子分成两个与对称轴平行的,分离的子空间之外,其余氨基酸和终止密码的密码子,都通过与空间对称轴平行的λλ平面或λ边简并,组成独立的,单一的连通子空间。”并对氨基酸密码子的惯用率与编码空间的对称关系,以及数字生物学的意义进行了分析和讨论。  相似文献   

6.
遗传密码子的设定表现出令人困惑的多态性特点 :不同氨基酸拥有的密码子的数目 ,除 5个外 ,从 1个到 6个都有 .这种特点显示出密码子无论在翻译行为还是进化轨迹上 ,都存在诸多的异质性 .因此 ,简并性一词的收敛含义 ,并不能表征这种多态性的进化内涵 .没有同义密码子的AUG(Met)和UGG (Trp)并无简并现象 .其余的密码子则可分为两大类 :一类是 ,4个同义密码子为 1组 ,具有相同的第 1、2位碱基 ,并遵循“3中读 2”的读出规则 .同组的 4个同义密码子 ,不过是来自同一个双字母原始密码子 (XYN)的孑遗物 ,从这个意义上讲 ,也不宜视为简并现象 ;另一类则主要是 ,2个同义密码子为一组 ,并遵循“3中读 3”读出规则 .它们是由编码 2个氨基酸的双义原始密码子 ,第 3位的未定碱基N进一步设定形成 .至于有 6个同义密码子的 ,特别令人困感不解的组别 ,实际上是 4 + 2个 ,这启示它们可能源于上述两大类 .遗传密码子多态性的起源 ,可能始于最初阶段 ,氨基酸同某类寡核苷酸的起始二联体的相互作用 ,而完成于所有的双义原始密码子的第 3位碱基的分化 .这种进化轨迹被传统的简并性一词所模糊 ,并导致鉴定各有关理论可信性的坚实依据和令不同观点取得共识的基础被掩盖起来 .这可能就是在遗传密码子起源领域里 ,长期存在着众  相似文献   

7.
理论物理与理论生物学家盖莫夫(G.Gamov)在1954年最先提出了遗传密码是核苷酸三联体的假说。1961年克里克(Crick)等人用T_4噬菌体码组位移突变做形式遗传学实验,证明遗传密码确实是以核苷酸三联体密码子代表20种标准氨基酸的。后来尼伦堡(Nirenberg)等人用人工合成的多聚核糖核苷酸作模板促进氨基酸参入的实验,解读了全部的遗传密码。  相似文献   

8.
已知所有的氨基酸中,只有遗传密码表内的20种基本氨基酸才能在核糖体中直接掺入肽链;但最近发现于原核、真核生物中的含硒酶里的硒代半胱氨酸(Se-Cys)似亦有此特点。生化、遗传实验均表明Se-Cys对应于终止密码子UGA;相应的tRNA(95bp)基因已经找到。但其转录产物上所携的Se-Cys很可能由原先携带着的Ser经O-磷酰Ser而来。上述发现显示了UGA作为有义密码子的保守性:也许它正处于从有义密码子变为无义密码子的进化过程中。  相似文献   

9.
由于遗传密码子的简并性特征,大多氨基酸由多于一种密码子编码.在蛋白质编码过程中,同义密码子间的使用有着较显著的偏差,即同义密码于使用频率不等.应用CUSP软件对数据集H3N2和MHC进行同义密码子使用偏性的分析,然后基于同义密码子的使用偏性建立新的密码子置换模型,并在此模型的基础上分析物种的正向选择性.分析结果表明新的密码子置换模型能更好地拟合数据,由此可得到更加可靠的参数估计值.  相似文献   

10.
线粒体遗传密码及基因组遗传密码的对称分析   总被引:7,自引:1,他引:6  
病毒、细菌和真核生物的氨基酸编码都使用相同的遗传密码,表明它们可能有共同的来源。但人和牛的线粒体的遗传密码和基因组的遗传密码相比,出现以下不同;(1)ATA编码甲硫氮酸M而不是异亮氨酸I。(2)TGA不再是终止密码子X而编码色氨酸W。(3)AGA和AGG不再是精氨酸R的密码子而变为终止密码子X。应用高维空间拓扑分析的方法,对线粒体遗传密码和基因组遗传密码的6维编码空间进行对称性分析,得到如下结果:(1)线粒体遗传密码的起始密码子是2个而不是1个。(2)线粒体遗传密码的终止密码子是4个而不是3个。(3)线粒体遗传密码空间只有2、4、6三种偶数简并度而没1、3两种奇数简并度,表明其对称度较高。(4)线粒体遗传密码空间除丝氨酸S分成两个平行的子空间之外,终止密码子X亦分成两个平行的子空间,表明其连通度较低。(5)线粒体遗传密码一基因组遗传密码相比,共有3个简并平面出现变异,即:1001λλ(M和I),011λ1λ(W和X),以及1011λλ(S和X或S和R)。(6)基因组遗传密码的1、3两种奇数简并度可能来源于线粒体遗传密码的1001λλ平面和011λ1λ平面的对称性破缺。对线粒体遗传密码变异的生物学意义及遗传密码的起源进行了分析和讨论。  相似文献   

11.
科技文摘     
遗传密码不是所有生物共通的吗? 遗传密码在所有生物中都是相同的这一点已成为常识,也是分子生物学研究成果之一。但最近据说在线粒体的DNA中发现了三个与一般不同的密码,引起了不小的反响。线粒体中的翻译与细胞质中的蛋白质合成可以完全独立地进行。线粒体的DNA序列中第一个确定的是编码酵母ATP ase的第9个亚基的部位。这个密码子的第三个  相似文献   

12.
遗传密码字典的破译,通用性作为遗传密码的基本特点之一被人们认可.近年来的研究发现了一些例外.除线粒体使用一组密码子其含义有别于核基因之外,原先被认为仅用作终止信号的无义密码子在某些情况下可重新诠释,编码特定的氨基酸.在揭示了硒代半胱氨酸由UGA编码后,最近的研究表明,在某些古细菌和真细菌中,无义密码子UAG可重新诠释,编码组成蛋白质的第22种天然氨基酸——吡咯赖氨酸.  相似文献   

13.
用N个密码子对m个编码对象进行编码的编码格式是m元N维空间中的一个顶点。64个密码子对20种氨基酸和终止密码子进行编码格式的组合编码数是一个十分巨大的数字。对多元高维编码空间的拓扑特性进行了分析和研究 ,并由此推导出m -N空间的特性三角的排列方式以及给出特性三角公式的数学证明。指出 ,目前的遗传密码的编码格式是21元64维编码空间的一个顶点。应用组合数学分析的方法 ,计算了遗传密码格式的最大组合编码数CM =4.19×1084 ,基因组遗传密码的组合编码数CG =1.13×1080 以及线粒体遗传密码的组合编码数CT =1.38×1079 等。分析结果表明 ,遗传密码的指定是一个小概率事件 ,可能来源于λ简并后的偶数三联密码配对的组合编码的对称破缺  相似文献   

14.
60年代阐明的遗传密码,即通用的、三联体的、简并性的密码,弄清楚了核酸的核苷酸排列顺序与其编码的蛋白质的氨基酸排列顺序之间的线性关系,故可称之谓“线性编码”。然而,仅就基因的表达而言,尽管基因载有其编码的  相似文献   

15.
郭向云 《化石》1990,(2):11-13
生命的起源问题,是一个古老的哲学问题,也是现代自然科学的重大课题之一。根据科学的推算,我们居住的地球从诞生到现在约有46亿年的历史,在地球诞生后经历了近十亿年的化学进化才产生了生命——蛋白质和核酸相互作用的生命体系。目前关于生命起源的化学进化过程大体可划分为四个阶段:(1)由无机小分子物质形成有机小分子物质;(2)由有机小分子物质形成生物大分子;(3)由生物大分子组成多分子体系;(4)由多分子体系演变为原始生命。据推测,原始地球大气是还原性的,主要有甲烷、氨、氮、氢、水蒸汽和二氧化碳等,此外还有一些硫化氢(H_2S),氰化氢(HCN)等其它成分。经过了30多年的  相似文献   

16.
先有核酸还是先有蛋白质,是当前生命起源研究中的难题。本文在讨论现代生物学和物理学对生命本质的认识后,评介了中国学者提出的一个基于N-磷酰化氨基酸自组装的蛋白质和核酸共进化的模型。在有核畜存在时;磷酸化氨基酸自组装提供了一个能把蛋白质合成和核酸合成偶联起来的最小的分子模型。同其他生命起源学说相比,这一模型更符合生命的基本特征(自复制、生长、变异和进化),以及Eigen“超循环论”的自组织和进化的理论框架。  相似文献   

17.
我们由E.coli AS1.76克隆了青霉素G酰化酶的基因,并且测定了其全部核苷酸序列。青霉素G酰化酶结构基因是由下述功能片段组成的:(1)编码信号肽(26个氨基酸残基)的78个碱基对;(2)编码α-亚基(209个氨基酸残基)的627个碱基对;(3)编码间隔肽(54个氨基酸残基)的162个碱基对;(4)编码β亚基(557个氨基酸残基)的1671个碱基对。此外,我们还发现起始密码子(ATG)前有个核糖体结合位点和启动子序列以及在终止密码子(TAA)之后有个转录终止信号。与最近发表的青霉素G酰化酶基因的DNA序列比较,同源性达99.7%。  相似文献   

18.
王华伟  许进 《生物技术》2003,13(1):39-41
核苷酸通过“三联密码”决定氨基酸顺序 ,这就是第一遗传密码。多肽链中氨基酸的一定顺序就是蛋白质的一级结构。 2 0世纪 5 0年代Anfinsen提出假说 ,认为蛋白质特定的三维空间结构是由氨基酸排列顺序所决定的 ,现在已被广泛接受。从无结构的氨基酸序列到有特定功能的蛋白质的信息传递 ,即蛋白质中的氨基酸序列与其空间结构的对应关系 ,被称为第二遗传密码。收稿日期 :2 0 0 2 - 0 6 - 1 1 ;修回日期 :2 0 0 2 - 0 9- 1 8作者简介 :王华伟 (1 978- ) ,男 ,湖北孝感人 ,硕士生 ,从事生物信息学、DNA分子生物计算研究。许进 (1 959…  相似文献   

19.
在重组蛋白质中20种天然氨基酸之间彼此相互替代的情况每天都会发生。所有这些都需改变在基因中编码氨基酸的三碱基密码子,使之变成所需蛋白的氨基酸密码。这是蛋白质工程的基本技术。现在,伯克利加里弗尼亚大学的Peter G. Schultz, Christopher J. Noren及其同事们发明了一种用天然蛋白中从未发现过的氨基酸替代天然氨基酸的新方法(Science 244:182~188)。这极大地增加了对改变蛋白质分子形状和特性的选择。为使非天然氨基酸替代氨基酸,伯克利的研究者们用“空白”错误密码ATG(胸腺嘧啶-腺嘌呤-鸟嘌呤)替换编码天然氨基酸的寡核苷酸密码子,信使RNA(mRNA)一般  相似文献   

20.
分子遗传学     
遗传是生物的一种特性。一切生物都能把它的遗传性状传递给它的后代。基因就是控制遗传性状的信息单位,而基因的分子基础是核酸。生物的各种遗传性状是以密码方式记录在核酸分子上的。世界上的生物种类繁多,性状各异,但其向后代传递的遗传密码却是通用的,都是根据同一种密码编制规律来为各式各样的遗传特性编码。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号