首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
用粒单系造血祖细胞(CFU-GM)体外琼脂半固体培养法,琼脂块原位固定,Wright染色与细胞化学和免疫细胞化学技术,对培养人的骨髓CFU-GM进行集落性质鉴定,结果表明:Wright染色能区别集落的性质及细胞的分化程度:CFU-GM的细胞中PAS、POX呈阳性反应;CD14、CD15分别在单核细胞和粒细胞的胞浆或胞膜上表达。该方法对鉴定细胞集落类型、集落中细胞的分化与成熟程度是简便可靠的手段。  相似文献   

2.
利用造血细胞体外琼脂培养技术,比较了狗的不同来源的GM—CFC增殖、分化性能和辐射敏感性。结果表明,在正常生理条件下循环血中GM—CFC集落产率约为骨髓的1/60;细胞集落开始形成时间较骨髓晚1天,细胞集落随培养时间(前3—5天)增加而增加,其增加速率约为骨髓的20%;辐射敏感性D_0值为0.34Gy,明显低于骨髓中GM—CFC的D_0值(0.82Gy)。造血干细胞动员剂动员后血中GM—CFC数量明显增加,细胞集落增加速率约为骨髓的59%,D_0值为0.72Gy。从而为循环血干细胞移植疗效提供了实验依据。  相似文献   

3.
目的和方法:高增殖潜能集落形成细胞(HPPCFC)是表达CD34+DRLin-的最早期造血祖细胞之一,它在体外的增殖分化能力可反映造血干细胞的某些特征。结果:本文研究了人正常骨髓CD34+造血细胞在体外扩增和形成HPPCFC的能力。利用CIMS100免疫磁性分离术首先获得>90%的CD34+造血细胞以富集HPPCFC。在含有Epo+GMCSF+IL3+IL6+SCF(简EGIIS)的无基质液培条件下,CD34+造血细胞在四周内可持续产生单个核细胞和HPPCFC,并使其总量最高可达1770倍和8倍,以第2和3周为最佳时期,但不同个体CD34+造血细胞的这种能力差别较大。结论:高度纯化的人骨髓CD34+造血细胞能够在含有最佳组合造血生长因子的无基质液培条件下持续扩增,为临床应用提供了重要依据。  相似文献   

4.
杨岚  祝彼得  陈为 《四川动物》2006,25(4):881-883
目的研究四物汤对再生障碍性贫血(AA)小鼠骨髓细胞体外增殖的影响,探讨其治疗AA的机制。方法采用流式细胞仪、骨髓造血祖细胞培养等技术,检测四物汤对AA小鼠骨髓细胞的增殖变化。结果 四物汤能促进骨髓有核细胞进入G2/S期、增加CFU—GM、CFU-E、BFU-E集落数,且与自然恢复组有明显增强的差异。结论 四物汤在体内有促进AA小鼠骨髓细胞增殖的作用,为补血药治疗AA提供了实验与理论依据。  相似文献   

5.
FL对脐血造血细胞长期液体培养的影响*   总被引:1,自引:0,他引:1       下载免费PDF全文
用脐血进行千细胞移植有许多优点,但有一个主要的缺点是可获得的细胞数量有限。因此脐血干细胞的体外扩增对于其临床应用具有重要意义。考察了Flt-3配体(FL)和干细胞因子(SCF)、白介索3(IL一3)、IL-6、粒细胞集落刺激因子(G-csF)、粒细胞巨噬细胞集落刺激因子(GM—CSF)的组合对脐血细胞扩增和分化的影响。培养42d,总细胞最多扩增了385,30±163 51倍(FL+SCF+G.CSF+GM—CSF),粒细胞巨噬细胞集落形成单位(CFU-GM)在第28天达到最高,最高扩增了409.52±189.50倍(FL十SCF+IL-3+IL一6)。FL与SCF等细胞因子具有协同作用,对所有考察的细胞因子组合中,加入FL都使总细胞和CFUGM的扩增倍数增加。FL+SCF培养的总细胞扩增最小,而CFU-GM长时间保持在较高水平,表明这FL和SCF有利于保持造血干细胞的活性,防止细胞分化。在存在G-CSF和GMCSF的培养中,总细胞获得了最大的扩增,但CFU-GM达到最大后很快下降至O,表明G-CSF和GM—CSF促进了细胞的分化。结果提示,细胞因子组合对脐血造血细胞的扩增和分化具有重要的作用.FL和SCF可促进造血细胞的扩增,而G-CSF和GM—CSF等可导致细胞的过度分化。  相似文献   

6.
巨细胞病毒感染对多向造血祖细胞体外增殖的影响   总被引:3,自引:0,他引:3  
探讨人巨细胞病毒(Human cytomegalovirus, HCMV)对脐血多向造血祖细胞(CFU-Mix)体外增殖的抑制作用,采用造血祖细胞体外半固体培养技术,培养、观察、计数HCMV-AD169株对脐血CFU-Mix集落产率、抑制率、集落峰值时间和集落维持时间;用聚合酶链反应(PCR)技术检测集落细胞内HCMV-DNA. 结果发现HCMV-AD169株感染的CFU-Mix集落产率较对照组明显减少(P<0.01),集落产率随病毒感染滴度的增高而减少,抑制率随病毒滴度的增高而逐渐增加;各组CFU-Mix集落峰值时间为10~12d (P>0.05), 不同滴度病毒感染组集落维持时间(15~18d)较对照组(22~24d)明显宿短(P<0.01);经PCR检测病毒感染组,发现CFU-Mix集落细胞内有HCMV-AD169 DNA存在. 因此认为多向造血祖细胞是HCMV的宿主细胞之一,HCMV-AD169能直接感染多向造血祖细胞, 抑制多向造血祖细胞的增殖和分化,此可能是临床HCMV感染患儿出现粒细胞减少、血小板减少和贫血的主要原因.  相似文献   

7.
体外培养脐血单个核细胞与CD34+富集细胞   总被引:1,自引:0,他引:1  
对比MNC和CD34 +富集细胞在SCF +IL 3+IL 6 +FL +Tpo细胞因子组合下的体外扩增特性 ,发现 :CD34 +富集细胞具有很高的扩增潜力 ,在本实验条件下其总细胞持续扩增了 8周 ,扩增倍数达 312 70 9± 86 40 5倍 ;而MNC在培养至第 4周扩增就已呈现下降趋势 ,最大仅扩增了 5 3 3± 6 2倍。对比集落和CD34 +细胞的扩增发现 ,MNC的集落密度和CD34 +细胞含量由第 0天至第 7天有一个上升的过程 ,而CD34 +富集细胞在培养过程中 ,集落密度和CD34 +细胞含量却始终呈下降趋势。在体外培养过程中 ,CD34 +富集细胞的CFU GM和CD34 +细胞最大分别扩增了 185 7± 14 1和 191 7± 188 8倍 ,明显高于MNC的 12 4± 3 2和 5 0 6± 33 2倍 ;而CD34 +富集细胞和MNC的BFU E则只实现了少量扩增 ,分别为 7 2± 5 2和 10 1± 3 4倍。结果显示 ,从CD34 +富集细胞出发扩增造血干 祖细胞 ,可以得到更多的CD34 +细胞和CFU GM集落形成细胞  相似文献   

8.
人参总皂甙对人GM-CSF和GM-CSFR表达的调控   总被引:6,自引:0,他引:6  
Wang SL  Chen D  Wang YP  Liu YG  Jiang R 《生理学报》2003,55(4):487-492
为探讨人参调控粒细胞发生的生物学机制,采用造血祖细胞和骨髓基质细胞体外培养、造血生长因子生物学活性检测、免疫细胞化学、核酸分子原位杂交、免疫沉淀和蛋白印迹等现代生物学技术,研究人参总皂甙(total saponins of Panax ginaeng,TSPG)对人粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)和粒-巨噬细胞集落刺激因子受体α(GM-CSFRα)表达的影响。结果:(1)经TSPG(50μg/m1)诱导制备的骨髓基质细胞、胸腺细胞、脾细胞、血管内皮细胞和单核细胞条件培养液可显著提高粒单系造血祖细胞(CFU-GM)的集落产率;(2)经TSPG(50μg/ml)诱导后,上述细胞的GM-CSF蛋白(诱导24h)和mRNA(诱导12h)表达显著提高;(3)经TSPG(50μg/ml)诱导24h骨髓造血细胞的GM-CSFRα蛋白表达增强;(4)经TSPG(50μg/ml)刺激后2min,GM-CSFRα和Shc发生酪氨酸磷酸化,5min时达高峰,随后去磷酸化。上述结果表明,TSPG可能通过直接和/或间接途径促进淋巴细胞与骨髓基质细胞合成与分泌GM-CSF,诱导骨髓造血细胞表达GM-CSFRα,并刺激GM-CSFRα和Shc的酪氨酸可逆磷酸化,从而通过调控GM-CSF的信号转导过程,促进CFU-GM的增殖。  相似文献   

9.
研究了造血干细胞生长因子、白介素-3、白介素-6、粒-巨噬细胞集落刺激因子、粒细胞集落刺激因子及红细胞生成素对脐血造血细胞体外培养的影响及其剂量关系,考察了造血细胞因子单独与联合作用对造血细胞体外培养的影响,证实细胞因子组合使用比细胞因子单独使用效果更好,发现SCF+IL-3+IL-6+GM-CSF+G-CSF+EPO组合对总细胞扩增最佳,SCF+IL-3+IL6+GM-CSF组合对CFU-GM扩增最佳。实验发现培养液更换可大大提高脐血造血细胞总数和祖细胞数产出。在每天更换50%培养液下,脐血总细胞数在第三周扩增了27倍,祖细胞数扩增了21倍。  相似文献   

10.
FLT3配基在人骨髓基质细胞系中的基因转移与表达   总被引:1,自引:0,他引:1  
目的:研究逆转录病毒介导的FL在骨髓基质细胞系HFCL中的表达。方法:采用脂质体法将重组质粒pLF-SN/HFCL和空载体pLXSN/HFCL转染包装细胞PA317,G418筛选抗性克隆,用抗性克隆上清液感染HFCL。RT-PCR和基因组DNA-PCR检测外源基因mRNA水平的表达及染色体的整合,小鼠CFU-GM集落法检测FL生物学活性。结果:在mRNA水平上有FL的表达,染色体基因组中整合有标记neo基因和FL基因。活性测试结果显示转染的骨髓基质细胞分泌FL。结论:提示骨髓基质细胞可作为基因治疗的靶细胞。  相似文献   

11.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 °C during the protein production phase increased production of the protein two-fold compared to 37 °C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 μg EGFP/106 infected cells, or 27 mg EGFP per liter.  相似文献   

12.
In this study, we employed bio-derived bone scaffold and composited with the marrow mesenchymal stem cell induced into osteoblast to replicate a “biomimetic niche.” The CD34+ cells or mononuclear cells (MNC) from umbilical cord blood were cultured for 2–5 weeks in the biomimetic niche (3D system) was compared with conventional two dimensional cultures (2D system) without adding cytokine supplement. After 2 weeks in culture, the CD34+ cells from umbilical cord blood in the 3D system increased 3.3–4.8 folds when compared with the initial CD34+ cells. CD34+/CD38 cells accounted for 82–90% of CD34+ cells. After 5 weeks, CD34+/CD38 cells in the 3D system increased when compared with initial (1.3 ± 0.3 × 103 vs. 1.0 ± 0.5 × 104, p < 0.05), but were decreased in the 2D system (1.3 ± 0.3 × 103 vs. 2.5 ± 0.7 × 102, p < 0.05). The CFU progenitors were produced more in the 3D system than in the 2D system (4.6–9.3 folds vs. 1.0–1.5 folds) after 2 weeks in culture, and the colony distribution in the 3D system manifested higher percentage of BFU-E and CFU-GEMM, but in the 2D system was mainly CFU-GM. The LTC-ICs in the 3D system showed 5.2–7.2 folds increase over input at 2 weeks in culture, and maintain the immaturation of hematopoietic progenitor cells (HPCs) over 5 weeks. In conclusion, this new 3D hematopoietic progenitor cell culture system is the first to utilize natural cancellous bone as scaffold with osteoblasts as supporting cells; it is mimicry of natural bone marrow HSC niche. Our primary work has demonstrated it could maintain and expand HSC/HPC in vitro.  相似文献   

13.
Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/106 cells followed by a period of stable conversion of about 100 pmol/h/106 cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo‐tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver. Biotechnol. Bioeng. 2012; 109: 3172–3181. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
On-line monitoring and control of cell culture fermentation is important for optimal and consistent production of biologicals. In this work, glucose and lactate concentrations are monitored on-line using a commercially available analyzer (Model 2700, Yellow Springs Instruments, Yellow Springs, OH) during batch and perfusion hybridoma cell fermentation. Cell free samples from the reactor are obtained using a 0.45 mum hollow fiber filtering system placed in a circulation loop. The samples were analyzed at specified times and the data are collected on a computer. A process control strategy was developed to control the concentrations of glucose and lactate in a perfusion reactor where the feed rate is adjusted to maintain their concentrations at desired set points. Hybridoma cells (A10G10) were cultivated in a high density perfusion culture where cell density increased from 2 to 14 million cells/mL. During this period the control algorithm successfully adjusted the perfusion rate while maintaining constant glucose and lactate concentrations. Glucose consumption and lactate accumulation rates as well as net lactate yield on glucose were monitored continuously during perfusion culture. These metabolic rates were observed to be independent of cell concentration and were used for the estimation of viable cell density in the reactor. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 372-378, 1997.  相似文献   

15.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 degrees C during the protein production phase increased production of the protein two-fold compared to 37 degrees C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 microg EGFP/10(6) infected cells, or 27 mg EGFP per liter.  相似文献   

16.
Two strains of human foreskin fibroblast cells were incapable of sustained growth in a matrix perfusion culture system, possibly because of their inability to attach to the fiber surfaces. Addition of microcarrier beads to the extracapillary space allowed attaining high cell densities in excess of 10(7) cells per culture unit. Microcarrier beads were tested in hollow fiber culture devices containing membranes of 10(4) or 10(5) D nominal porosities. Best results were obtained when initial cell densities of at least (2-3) x 10(6) cells were used in units with 10(5) D pore size membranes and DEAE-Sephadex or polyacryl-amide microcarrier beads in the extracapillary space. This extension of the matrix perfusion system should be useful for growing other anchorage dependent cells while retaining the advantages of perfusion culture.  相似文献   

17.
Caco-2 cells usually require 21 days of culture for developing sufficient differentiation in traditional two-dimensional Transwell culture, deviating far away from the quick differentiation of enterocytes in vivo. The recently proposed three-dimensional cultures of Caco-2 cells, though imitating the villi/crypt-like microstructure of intestinal epithelium, showed no effect on accelerating the differentiation of Caco-2 cells. In this study, a novel culture of Caco-2 cells on hollow fiber bioreactor was applied to morphologically mimic the human small intestine lumen for accelerating the expression of intestine functions. The porous hollow fibers of polyethersulfone (PES), a suitable membrane material for Caco-2 cell culture, successfully promoted cells to form confluent monolayer on the inner surface. The differentiated functions of Caco-2 cells, represented by alkaline phosphatase, γ-glutamyltransferase, and P-glycoprotein activity, were greatly higher in a 10-day hollow fiber culture than in a 21-day Transwell culture. Moreover, the Caco-2 cells on PES hollow fibers expressed higher F-actin and zonula occludens-1 protein than those on Transwell culture, indicative of an increased mechanical stress in Caco-2 cells on PES hollow fibers. The accelerated differentiation of Caco-2 cells on PES hollow fibers was unassociated with membrane chemical composition and surface roughness, but could be stimulated by hollow fiber configuration, since PES flat membranes with either rough or smooth surface failed to enhance the differentiation of Caco-2. Therefore, the accelerated expression of Caco-2 cell function on hollow fiber culture might show great values in simulation of the tissue microenvironment in vivo and guide the construction of intestinal tissue engineering apparatus.  相似文献   

18.
针对造血干/祖细胞体外扩增对培养环境的需求, 结合静/动态培养的特点, 开发了一种新型的生物反应器用于造血干/祖细胞的体外扩增。在该生物反应器内, 采用SCF+TPO+Flt-3细胞因子组合, 比较了静态和循环培养两种方式体外扩增脐血CD34+细胞的效果。培养7 d后, 总细胞分别扩增了(13.86 ± 4.26)和(7.23 ± 2.67)倍, 显示静态培养有利于总细胞的扩增; CD34+细胞扩增倍数、培养物中CD34+细胞含量均相近, 无显著性差异; 而CD34+CD38-细胞扩增倍数以及培养物中CD34+CD38?细胞的百分含量分别为(1.82 ± 0.58)和(3.90 ± 0.85)倍以及(9.45 ± 4.85)和(37.47 ± 14.06)%, 循环培养明显高于静态培养。可见, 在该生物反应器内, 采用静态和循环两种培养方式, 均能实现造血干/祖细胞的体外扩增, 但静态培养促使造血干细胞向定向祖细胞分化, 而循环培养则更有利于早期造血干细胞的扩增。  相似文献   

19.
针对造血干/祖细胞体外扩增对培养环境的需求, 结合静/动态培养的特点, 开发了一种新型的生物反应器用于造血干/祖细胞的体外扩增.在该生物反应器内, 采用SCF TPO Flt-3细胞因子组合, 比较了静态和循环培养两种方式体外扩增脐血CD34 细胞的效果.培养7 d后, 总细胞分别扩增了(13.86 ± 4.26)和(7.23 ± 2.67)倍, 显示静态培养有利于总细胞的扩增; CD34 细胞扩增倍数、培养物中CD34 细胞含量均相近, 无显著性差异; 而CD34 CD38-细胞扩增倍数以及培养物中CD34 CD38-细胞的百分含量分别为(1.82 ± 0.58)和(3.90 ± 0.85)倍以及(9.45 ± 4.85)和(37.47 ± 14.06)%, 循环培养明显高于静态培养.可见, 在该生物反应器内, 采用静态和循环两种培养方式, 均能实现造血干/祖细胞的体外扩增, 但静态培养促使造血干细胞向定向祖细胞分化, 而循环培养则更有利于早期造血干细胞的扩增.  相似文献   

20.
We have developed a hematopoietic co-culture system using the hollow fiber bioreactor (HFBR) as a potential in vitro bone marrow model for evaluating leukemia. Supporting stroma using HS-5 cells was established in HFBR system and the current bioprocess configuration yielded an average glucose consumption of 640 mg/day and an average protein concentration of 6.40 mg/mL in the extracapillary space over 28 days. Co-culture with erythroleukemia K562 cells was used as a model for myelo-leukemic cell proliferation and differentiation. Two distinct localizations of K562 cells (loosely adhered and adherent cells) were identified and characterized after 2 weeks. The HFBR co-culture resulted in greater leukemic cell expansion (3,130 fold vs. 43 fold) compared to a standard tissue culture polystyrene (TCP) culture. Majority of expanded cells (68%) in HFBR culture were the adherent population, highlighting the importance of cell-cell contact for myelo-leukemic proliferation. Differentiation tendencies in TCP favored maturation toward monocyte and erythrocyte lineages but maintained a pool of myeloid progenitors. In contrast, HFBR co-culture exhibited greater lineage diversity, stimulating monocytic and megakaryocytic differentiation while inhibiting erythroid maturation. With the extensive stromal expansion capacity on hollow fiber surfaces, the HFBR system is able to achieve high cell densities and 3D cell-cell contacts mimicking the bone marrow microenvironment. The proposed in vitro system represents a dynamic and highly scalable 3D co-culture platform for the study of cell-stroma dependent hematopoietic/leukemic cell functions and ex vivo expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号