首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we investigated the role of the tyrosine decarboxylation pathway in the response of Enterococcus faecium E17 cells to an acid challenge. It was found that 91% of the cells were able to remain viable in the presence of tyrosine when they were incubated for 3 h in a complex medium at pH 2.5. This effect was shown to be related to the tyrosine decarboxylation pathway. Therefore, the role of tyrosine decarboxylation in pH homeostasis was studied. The membrane potential and pH gradient, the parameters that compose the proton motive force (PMF), were measured at different pHs (pH 4.5 to 7). We obtained evidence showing that the tyrosine decarboxylation pathway generates a PMF composed of a pH gradient formed due to proton consumption in the decarboxylation reaction and by a membrane potential which results from electrogenic transport of tyrosine in exchange for the corresponding biogenic amine tyramine. The properties of the tyrosine transporter were also studied in this work by using whole cells and right-side-out vesicles. The results showed that the transporter catalyzes homologous tyrosine/tyrosine antiport, as well as electrogenic heterologous tyrosine-tyramine exchange. The tyrosine transporter had properties of a typical precursor-product exchanger operating in a proton motive decarboxylation pathway. Therefore, the tyrosine decarboxylation pathway contributes to an acid response mechanism in E. faecium E17. This decarboxylation pathway gives the strain a competitive advantage in nutrient-depleted conditions, as well as in harsh acidic environments, and a better chance of survival, which contributes to higher cell counts in food fermentation products.  相似文献   

2.
Some lactic acid bacteria contain a tyrosine decarboxylase (TDC) which converts tyrosine to tyramine, a biogenic amine frequently encountered in fermented food and wine. Purification and microsequencing of the TDC of Lactobacillus brevis IOEB 9809 allowed us to determine a partial sequence of the TDC gene encoding 264 amino acids of the enzyme. Analysis of this protein sequence revealed typical features of pyridoxal phosphate-dependent amino acid decarboxylases while not any known decarboxylase was closely related to the TDC of L. brevis IOEB 9809. In addition, we could detect other L. brevis strains carrying a TDC gene in a rapid assay based on the polymerase chain reaction.  相似文献   

3.
Aromatic residues may play several roles in integral membrane proteins, including direct interaction with substrates. In this work, we studied the contribution of tyrosine residues to the activity of EmrE, a small multidrug transporter from Escherichia coli that extrudes various drugs across the plasma membrane in exchange with protons. Each of five tyrosine residues was replaced by site-directed mutagenesis. Two of these residues, Tyr-40 and Tyr-60, can be partially replaced with hydroxyamino acids, but in the case of Tyr-40, replacement with either Ser or Thr generates a protein with modified substrate specificity. Replacement of Tyr-4 with either Trp or Phe generates a functional transporter. A Cys replacement at this position generates an uncoupled protein; it binds substrate and protons and transports the substrate downhill but is impaired in uphill substrate transport in the presence of a proton gradient. The role of these residues is discussed in the context of the published structures of EmrE.  相似文献   

4.
Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system.  相似文献   

5.
Most chlamydial strains have a pyruvoyl-dependent decarboxylase protein that converts L-arginine to agmatine. However, chlamydiae do not produce arginine, so they must import it from their host. Chlamydophila pneumoniae has a gene cluster encoding a putative outer membrane porin (CPn1033 or aaxA), an arginine decarboxylase (CPn1032 or aaxB), and a putative cytoplasmic membrane transporter (CPn1031 or aaxC). The aaxC gene was expressed in Escherichia coli producing an integral cytoplasmic membrane protein that catalyzed the exchange of L-arginine for agmatine. Expression of the aaxA gene produced an outer membrane protein that enhanced the arginine uptake and decarboxylation activity of cells coexpressing aaxB and aaxC. This chlamydial arginine/agmatine exchange system complemented an E. coli mutant missing the native arginine-dependent acid resistance system. These cells survived extreme acid shock in the presence of L-arginine. Biochemical and evolutionary analysis showed the aaxABC genes evolved convergently with the enteric arginine degradation system, and they could have a different physiological role in chlamydial cells. The chlamydial system uniquely includes an outer membrane porin, and it is most active at a higher pH from 3 to 5. The chlamydial AaxC transporter was resistant to cadaverine, L-lysine and L-ornithine, which inhibit the E. coli AdiC antiporter.  相似文献   

6.
The membrane-bound beta-subunit of oxaloacetate decarboxylase from Klebsiella pneumoniae catalyzes the decarboxylation of carboxybiotin, which is coupled to Na(+) translocation and consumes a periplasmically derived proton. Upon site-directed mutagenesis of 20 polar and/or conserved residues within putative membrane-integral regions, the specific oxaloacetate decarboxylase activities were reduced to various extents, but only the enzyme with a Y229F mutation was completely inactive. We propose that Y229 is part of the network by which the proton of S382 is delivered to carboxybiotin, where it is consumed upon catalyzing the immediate decarboxylation of this acid-labile compound. Unlike S382 or D203, Y229 appears to be not involved in Na(+) binding, because in the Y229F orY229A mutants, the beta-subunit was protected from tryptic digestion by 50 mM NaCl like in the wild-type enzyme. Oxaloacetate decarboxylase with a betaC291E mutation was unstable in the absence of Na(+) and dissociated into an alpha-gamma subcomplex and the beta-subunit. The enzyme could only be isolated in the presence of 0. 5 M NaCl. These results are consistent with the notion that the beta-subunit changes its conformation upon Na(+) binding.  相似文献   

7.
Curacin A is a mixed polyketide/nonribosomal peptide possessing anti-mitotic and anti-proliferative activity. In the biosynthesis of curacin A, the N-terminal domain of the CurF multifunctional protein catalyzes decarboxylation of 3-methylglutaconyl-acyl carrier protein (ACP) to 3-methylcrotonyl-ACP, the postulated precursor of the cyclopropane ring of curacin A. This decarboxylase is encoded within an "HCS cassette" that is used by several other polyketide biosynthetic systems to generate chemical diversity by introduction of a beta-branch functional group to the natural product. The crystal structure of the CurF N-terminal ECH(2) domain establishes that the protein is a crotonase superfamily member. Ala(78) and Gly(118) form an oxyanion hole in the active site that includes only three polar side chains as potential catalytic residues. Site-directed mutagenesis and a biochemical assay established critical functions for His(240) and Lys(86), whereas Tyr(82) was nonessential. A decarboxylation mechanism is proposed in which His(240) serves to stabilize the substrate carboxylate and Lys(86) donates a proton to C-4 of the acyl-ACP enolate intermediate to form the Delta(2) unsaturated isopentenoyl-ACP product. The CurF ECH(2) domain showed a 20-fold selectivity for ACP-over CoA-linked substrates. Specificity for ACP-linked substrates has not been reported for any other crotonase superfamily decarboxylase. Tyr(73) may select against CoA-linked substrates by blocking a contact of Arg(38) with the CoA adenosine 5'-phosphate.  相似文献   

8.
Diaminopimelate decarboxylase (DAPDC) and ornithine decarboxylase (ODC) are pyridoxal 5'-phosphate dependent enzymes that are critical to microbial growth and pathogenicity. The latter is the target of drugs that cure African sleeping sickness, while the former is an attractive target for antibacterials. These two enzymes share the (β/α)(8) (i.e., TIM barrel) fold with alanine racemase, another pyridoxal 5'-phosphate dependent enzyme critical to bacterial survival. The active site structural homology between DAPDC and ODC is striking even though DAPDC catalyzes the decarboxylation of a D stereocenter with inversion of configuration and ODC catalyzes the decarboxylation of an L stereocenter with retention of configuration. Here, the structural and mechanistic bases of these interesting properties are explored using reactions of alternate substrates with both enzymes. It is concluded that simple binding determinants do not control the observed stereochemical specificities for decarboxylation, and a concerted decarboxylation/proton transfer at Cα of the D stereocenter of diaminopimelate is a possible mechanism for the observed specificity with DAPDC.  相似文献   

9.
Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.  相似文献   

10.
According to the current edition of the Bergey's Manual of Systematic Bacteriology [11] the tyrosine decarboxylation test allows the differentiation of enterococci. Tyrosine is decarboxylated to the biogenic amine tyramine by E. faecalis and not by E. faecium strains. In the present study we sequenced the16S rDNA of two tyramine-producing strains, BIFI-56 and BIFI-58, presumptively classified as E. faecalis. Their 16S rDNA were identical to the same fragment from the E. faecium type strain. Several E. faecium strains were then checked for their ability to decarboxylate tyrosine and also a putative tyrosine decarboxylase-coding gene was PCR amplified from these strains. All the strains confirmed as E. faecium produced tyramine and possessed a DNA fragment coding for a putative tyrosine decarboxylase. The concordance of the two methods allows us to conclude that the tyrosine decarboxylase test cannot be used in the differentiation of E. faecalis from E. faecium since at least some E. faecium strains are tyramine producers.  相似文献   

11.
The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of β‐phenylethylamine. Kinetics of tyramine and β‐phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine‐enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to β‐phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2‐DE and MALDI‐TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and β‐phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down‐regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy‐supplying routes. The most interesting finding is a membrane‐bound TDC highly over‐expressed during amine production. This is the first evidence of a true membrane‐bound TDC, longly suspected in bacteria on the basis of the gene sequence.  相似文献   

12.
Carbohydrate/citrate cometabolism in Lactococcus lactis results in the formation of the flavor compound acetoin. Resting cells of strain IL1403(pFL3) rapidly consumed citrate while producing acetoin when substoichiometric concentrations of glucose or l-lactate were present. A proton motive force was generated by electrogenic exchange of citrate and lactate catalyzed by the citrate transporter CitP and proton consumption in decarboxylation reactions in the pathway. In the absence of glucose or l-lactate, citrate consumption was biphasic. During the first phase, hardly any citrate was consumed. In the second phase, citrate was converted rapidly, but without the formation of acetoin. Instead, significant amounts of the intermediates pyruvate and α-acetolactate, and the end product acetate, were excreted from the cells. It is shown that the intermediates and acetate are excreted in exchange with the uptake of citrate catalyzed by CitP. The availability of exchangeable substrates in the cytoplasm determines both the rate of citrate consumption and the end product profile. It follows that citrate metabolism in L. lactis IL1403(pFL3) splits up in two routes after the formation of pyruvate, one the well-characterized route yielding acetoin and the other a new route yielding acetate. The flux distribution between the two branches changes from 85:15 in the presence of l-lactate to 30:70 in the presence of pyruvate. The proton motive force generated was greatest in the presence of l-lactate and zero in the presence of pyruvate, suggesting that the pathway to acetate does not generate proton motive force.  相似文献   

13.
The thiamin diphosphate (ThDP)-dependent enzyme indolepyruvate decarboxylase (IPDC) is involved in the biosynthetic pathway of the phytohormone 3-indoleacetic acid and catalyzes the nonoxidative decarboxylation of 3-indolepyruvate to 3-indoleacetaldehyde and carbon dioxide. The steady-state distribution of covalent ThDP intermediates of IPDC reacting with 3-indolepyruvate and the alternative substrates benzoylformate and pyruvate has been analyzed by (1)H NMR spectroscopy. For the first time, we are able to isolate and directly assign covalent intermediates of ThDP with aromatic substrates. The intermediate analysis of IPDC variants is used to infer the involvement of active site side chains and functional groups of the cofactor in distinct catalytic steps during turnover of the different substrates. As a result, three residues (glutamate 468, aspartate 29, and histidine 115) positioned perpendicular to the thiazolium moiety of ThDP are involved in binding of all substrates and decarboxylation of the respective tetrahedral ThDP-substrate adducts. Most likely, interactions of these side chains with the substrate-derived carboxylate account for an optimal orientation of the substrate and/or intermediate in the course of carbon-carbon ligation and decarboxylation supporting the suggested least-motion, maximum overlap mechanism. The active site residue glutamine 383, which is located at the opposite site of the thiazolium nucleus as the "carboxylate pocket" (formed by the Glu-Asp-His triad), is central to the substrate specificity of IPDC, probably through orbital alignment. The Glu51-cofactor proton shuttle is, conjointly with the Glu-Asp-His triad, involved in multiple proton transfer steps, including ylide generation, substrate binding, and product release. Studies with para-substituted benzoylformate substrates demonstrate that the electronic properties of the substrate affect the stabilization or destabilization of the carbanion intermediate or carbanion-like transition state and in that way alter the rate dependence on decarboxylation. In conclusion, general mechanistic principles of catalysis of ThDP-dependent enzymes are discussed.  相似文献   

14.
After the oral administration of large doses of tyrosine, tryptophan, or phenylalanine to rats, increased plasma levels of these amino acids can be observed. These levels can be further elevated, approximately 2-fold, by administering along with the amino acids, inhibitors of aromatic-l-amino acid decarboxylase. The inhibitors, by themselves, do not alter control plasma levels of the aromatic amino acids. This effect of the inhibitors appears to be specific for amino acids which are substrates of the decarboxylase since they did not further elevate plasma levels of leucine or valine after oral loading of these amino acids. Elevation of plasma tyrosine could also be observed after inhibition of the decarboxylase when tyrosine was administered intraperitoneally or in rats pretreated with antimicrobial agents, indicating that inhibition of decarboxylation by intestinal bacteria was not responsible for the effects. It was shown that the decarboxylase inhibitors do not act by simultaneously inhibiting other major routes of metabolism, such as transamination in the case of tyrosine. These findings indicate that, when tissue levels of tyrosine, phenylalanine, or tryptophan are elevated, decarboxylation becomes a major route for their metabolism.  相似文献   

15.
The HEM12 gene from Saccharomyces cerevisiae encodes uroporphyrinogen decarboxylase which catalyzes the sequential decarboxylation of the four acetyl side chains of uroporphyrinogen to yield coproporphyrinogen, an intermediate in protoheme biosynthesis. The gene was isolated by functional complementation of a hem12 mutant. Sequencing revealed that the HEM12 gene encodes a protein of 362 amino acids with a calculated molecular mass of 41,348 Da. The amino acid sequence shares 50% identity with human and rat uroporphyrinogen decarboxylase and shows 40% identity with the N-terminus of an open reading frame described in Synechococcus sp. We determined the sequence of two hem12 mutations which lead to a totally inactive enzyme. They correspond to the amino acid changes Gly33----Asp and Gly300----Asp, located in two evolutionarily conserved regions. Each of these substitutions impairs binding of substrates without affecting the overall conformation of the protein. These results argue that a single active center exists in uroporphyrinogen decarboxylase.  相似文献   

16.
We have demonstrated that gramicidin S synthetase 1 (GS 1), phenylalanine racemase [EC 5.1.1.11], of Bacillus brevis catalyzes the exchange between a proton in the medium and alpha-hydrogen of phenylalanine in the course of the racemase reaction by using tritiated water or L-phenyl[2,3-3H]alanine. GS 1 from some gramicidin S non-producing mutants of B. brevis lacking phenylalanine racemase activity did not catalyze the tritium exchange reaction. The proton exchange between phenylalanine bound as thioester on the GS 1-phenylalanine complex and water in the medium was detected, but 5,5'-dithiobis(2-nitrobenzoic acid)-modified complex lacked both the proton exchange and phenylalanine racemase activity. It is suggested that a base group, probably a sulfhydryl group, on the enzyme functions as proton donor and acceptor during the phenylalanine racemase reaction.  相似文献   

17.
18.
19.
Feng WY  Austin TJ  Chew F  Gronert S  Wu W 《Biochemistry》2000,39(7):1778-1783
The mechanism of orotidine 5'-monophosphate decarboxylase (OMP decarboxylase, ODCase) was studied using the decarboxylation of orotic acid analogues as a model system. The rate of decarboxylation of 1,3-dimethylorotic acid and its analogues as well as the stability of their corresponding carbanion intermediates was determined. The results have shown that the stability of the carbanion intermediate is not a critical factor in the rate of decarboxylation. On the other hand, the reaction rate is largely dependent on the equilibrium constant for the formation of a zwitterion. Based on these results, we have proposed a new mechanism in which ODCase catalyzes the decarboxylation of OMP by binding the substrate in a zwitterionic form and providing a destabilizing environment for the carboxylate group of OMP.  相似文献   

20.
In the absence of oxygen and nitrate, Pseudomonas aeruginosa metabolizes arginine via the arginine deiminase pathway, which allows slow growth on rich media. The conversion of arginine to ornithine, CO2, and NH3 is coupled to the production of ATP from ADP. The enzymes of the arginine deiminase pathway are organized in the arcDABC operon. The arcD gene encodes a hydrophobic polytopic membrane protein. Translocation of arginine and ornithine in membrane vesicles derived from an Escherichia coli strain harboring a recombinant plasmid carrying the arcD gene was studied. Arginine and ornithine uptake was coupled to the proton motive force with a bias toward the transmembrane electrical potential. Accumulated ornithine was readily exchangeable for external arginine or lysine. The exchange was several orders of magnitude faster than proton motive force-driven transport. The ArcD protein was reconstituted in proteoliposomes after detergent solubilization of membrane vesicles. These proteoliposomes mediate a stoichiometric exchange between arginine and ornithine. It is concluded that the ArcD protein is a transport system that catalyzes an electroneutral exchange between arginine and ornithine to allow high-efficiency energy conversion in the arginine deiminase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号