首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site residues.  相似文献   

2.
After the oral administration of large doses of tyrosine, tryptophan, or phenylalanine to rats, increased plasma levels of these amino acids can be observed. These levels can be further elevated, approximately 2-fold, by administering along with the amino acids, inhibitors of aromatic-l-amino acid decarboxylase. The inhibitors, by themselves, do not alter control plasma levels of the aromatic amino acids. This effect of the inhibitors appears to be specific for amino acids which are substrates of the decarboxylase since they did not further elevate plasma levels of leucine or valine after oral loading of these amino acids. Elevation of plasma tyrosine could also be observed after inhibition of the decarboxylase when tyrosine was administered intraperitoneally or in rats pretreated with antimicrobial agents, indicating that inhibition of decarboxylation by intestinal bacteria was not responsible for the effects. It was shown that the decarboxylase inhibitors do not act by simultaneously inhibiting other major routes of metabolism, such as transamination in the case of tyrosine. These findings indicate that, when tissue levels of tyrosine, phenylalanine, or tryptophan are elevated, decarboxylation becomes a major route for their metabolism.  相似文献   

3.
Some lactic acid bacteria contain a tyrosine decarboxylase (TDC) which converts tyrosine to tyramine, a biogenic amine frequently encountered in fermented food and wine. Purification and microsequencing of the TDC of Lactobacillus brevis IOEB 9809 allowed us to determine a partial sequence of the TDC gene encoding 264 amino acids of the enzyme. Analysis of this protein sequence revealed typical features of pyridoxal phosphate-dependent amino acid decarboxylases while not any known decarboxylase was closely related to the TDC of L. brevis IOEB 9809. In addition, we could detect other L. brevis strains carrying a TDC gene in a rapid assay based on the polymerase chain reaction.  相似文献   

4.
Wines containing high levels of biogenic amines were investigated for the presence of tyramine-producing strains. Two different Lactobacillus brevis (IOEB 9809 and IOEB 9901) able to produce the amine were isolated. None of the isolated strains identified as Oenococcus oeni formed tyramine. In addition, other Lact. brevis and Lact. hilgardii strains from our collection (IOEB) and the American Type Culture Collection (ATCC) were strong tyramine producers. Lactobacillus brevis IOEB 9809 and Lact. hilgardii IOEB 9649 were found to produce tyramine and phenylethylamine simultaneously. The conditions that can influence tyramine formation in wine were evaluated for three strains of Lact. brevis (IOEB 9809 and IOEB 9901) and Lact. hilgardii (IOEB 9649). Tyrosine was the major factor affecting tyramine formation and was enhanced by the presence of sugars, mainly glucose. Tyrosine decarboxylase (TDC) activity greatly depended on the presence of the precursor, which suggested that tyrosine induced the TDC system. These results indicate that Lactobacillus could be the lactic acid bacteria responsible for tyramine production in wine.  相似文献   

5.
6.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Abnormal aggregation of β‐amyloid (Aβ) peptide plays an important role in the onset and progress of Alzheimer's disease (AD); hence, targeting Aβ aggregation is considered as an effective therapeutic strategy. Here, we studied the aromatic‐interaction‐mediated inhibitory effect of oligomeric polypeptides (K8Y8, K4Y8, K8W8) on Aβ42 fibrillization process. The polypeptides containing lysine as well as representative aromatic amino acids of tryptophan or tyrosine were found to greatly suppress the aggregation as evaluated by thioflavin T assay. Circular dichroism spectra showed that the β‐sheet formation of Aβ42 peptides decreased with the polypeptide additives. Molecular docking studies revealed that the oligomeric polypeptides could preferentially bind to Aβ42 through π–π stacking between aromatic amino acids and Phe19, together with hydrogen bonding. The cell viability assay confirmed that the toxicity of Aβ42 to SH‐SY5Y cells was markedly reduced in the presence of polypeptides. This study could be beneficial for developing peptide‐based inhibitory agents for amyloidoses. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The spent media of HepG2 human hepatoma cells and 3Y1 rat embryo fibroblasts labeled with [35S]sulfate, upon ultrafiltration, were analyzed by a two-dimensional thin-layer separation procedure. Autoradiographs of the cellulose thin-layer plate revealed the presence of tyramine-O-[35S]sulfate in addition to tyrosine-O-[35S]sulfate in spent medium from human hepatoma cells. In contrast, only tyrosine-O-[35S]sulfate was observed in spent medium of 3Y1 rat fibroblasts. Using adenosine, 3'-phosphate, 5'-phospho[35S]sulfate as the sulfate donor, sulfotransferase(s) present in HepG2 cell homogenate catalyzed the sulfation of tyramine to tyramine-O-[35S]sulfate, but not the sulfation of tyrosine to tyrosine-O-[35S]sulfate. Endogenous aromatic amino acid decarboxylase present in HepG2 homogenate was shown to catalyze the decarboxylation of [3H]tyrosine to form [3H]tyramine while attempts to use it for the decarboxylation of tyrosine-O-sulfate to form tyramine-O-sulfate were unsuccessful. These results suggest that tyramine-O-sulfate may be derived from the de novo sulfation of tyramine, instead of the decarboxylation of tyrosine-O-sulfate.  相似文献   

9.
Tyramine, one of the various biogenic amines found in plants, is derived from the aromatic L-amino acid tyrosine through the catalytic reaction of tyrosine decarboxylase (TYDC). Tyramine overproduction by constitutive expression of TYDC in rice plants leads to stunted growth, but an increased number of tillers. To regulate tyramine production in rice plants, we expressed TYDC under the control of a methanol-inducible plant tryptophan decarboxylase (TDC) promoter and generated transgenic T(2) homozygous rice plants. The transgenic rice plants showed normal growth phenotypes with slightly increased levels of tyramine in seeds relative to wild type. Upon treatment with 1% methanol, the transgenic rice leaves produced large amounts of tyramine, whereas no increase in tyramine production was observed in wild-type plants. The methanol-induced accumulation of tyramine in the transgenic rice leaves was inversely correlated with the tyrosine level. These data indicate that tyramine production in rice plants can be artificially controlled using the methanol-inducible TDC promoter, suggesting that this promoter could be used to selectively induce the expression of other proteins or metabolites in rice plants.  相似文献   

10.
Kang S  Kang K  Lee K  Back K 《Planta》2007,227(1):263-272
l-Tryptophan decarboxylase (TDC) and l-tyrosine decarboxylase (TYDC) belong to a family of aromatic l-amino acid decarboxylases and catalyze the conversion of tryptophan and tyrosine into tryptamine and tyramine, respectively. The rice genome has been shown to contain seven TDC or TYDC-like genes. Three of these genes for which cDNA clones were available were characterized to assign their functions using heterologous expression in Escherichia coli and rice (Oryza sativa cv. Dongjin). The purified products of two of the genes were expressed in E. coli and exhibited TDC activity, whereas the remaining gene could not be expressed in E. coli. The recombinant TDC protein with the greatest TDC activity showed a K m of 0.69 mM for tryptophan, and its activity was not inhibited by phenylalanine or tyrosine, indicating a high level of substrate specificity toward tryptophan. The ectopic expression of the three cDNA clones in rice led to the abundant production of the products of the encoded enzymes, tyramine and tryptamine. The overproduction of TYDC resulted in stunted growth and a lack of seed production due to tyramine accumulation, which increased as the plant aged. In contrast, transgenic plants that produced TDC showed a normal phenotype and contained 25-fold and 11-fold higher serotonin in the leaves and seeds, respectively, than the wild-type plants. The overproduction of either tyramine or serotonin was not strongly related to the enhanced synthesis of tyramine or serotonin derivatives, such as feruloyltyramine and feruloylserotonin, which are secondary metabolites that act as phytoalexins in plants.  相似文献   

11.
The substrate specificity of tryptophan (Trp) decarboxylase (TDC) for Trp and tyrosine (Tyr) decarboxylase (TYDC) for Tyr was used to modify the in vivo pools of these amino acids in transgenic tobacco. Expression of TDC and TYDC was shown to deplete the levels of Trp and Tyr, respectively, during seedling development. The creation of artificial metabolic sinks for Trp and Tyr also drastically affected the levels of phenylalanine, as well as those of the non-aromatic amino acids methionine, valine, and leucine. Transgenic seedlings also displayed a root-curling phenotype that directly correlated with the depletion of the Trp pool. Non-transformed control seedlings could be induced to display this phenotype after treatment with inhibitors of auxin translocation such as 2,3,5-triiodobenzoic acid or N-1-naphthylphthalamic acid. The depletion of aromatic amino acids was also correlated with increases in the activities of the shikimate and phenylpropanoid pathways in older, light-treated transgenic seedlings expressing TDC, TYDC, or both. These results provide in vivo confirmation that aromatic amino acids exert regulatory feedback control over carbon flux through the shikimate pathway, as well as affecting pathways outside of aromatic amino acid biosynthesis.  相似文献   

12.
The trace biogenic amine tyramine is present in the nervous systems of animals ranging in complexity from nematodes to mammals. Tyramine is synthesized from tyrosine by the enzyme tyrosine decarboxylase (TDC), a member of the aromatic amino acid family, but this enzyme has not been identified in Drosophila or in higher animals. To further clarify the roles of tyramine and its metabolite octopamine, we have cloned two TDC genes from Drosophila melanogaster, dTdc1 and dTdc2. Although both gene products have TDC activity in vivo, dTdc1 is expressed nonneurally, whereas dTdc2 is expressed neurally. Flies with a mutation in dTdc2 lack neural tyramine and octopamine and are female sterile due to egg retention. Although other Drosophila mutants that lack octopamine retain eggs completely within the ovaries, dTdc2 mutants release eggs into the oviducts but are unable to deposit them. This specific sterility phenotype can be partially rescued by driving the expression of dTdc2 in a dTdc2-specific pattern, whereas driving the expression of dTdc1 in the same pattern results in a complete rescue. The disparity in rescue efficiencies between the ectopically expressed Tdc genes may reflect the differential activities of these gene products. The egg retention phenotype of the dTdc2 mutant and the phenotypes associated with ectopic dTdc expression contribute to a model in which octopamine and tyramine have distinct and separable neural activities.  相似文献   

13.
Free‐standing single‐layer β‐sheets are extremely rare in naturally occurring proteins, even though β‐sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single‐layer, anti‐parallel β‐sheet proteins, comprised of three or four twisted β‐hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of β‐sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent‐exposed tyrosine residues, was identified on the concave surface of the β‐sheet. These new modular single‐layer β‐sheet proteins may serve as a new model system for studying folding and design of β‐rich proteins.  相似文献   

14.
15.
16.
NagZ is an N‐acetyl‐β‐d ‐glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram‐negative bacteria by removing N‐acetyl‐glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6‐anhydromuramoyl‐peptide products generated by NagZ activate β‐lactam resistance in many Gram‐negative bacteria by inducing the expression of AmpC β‐lactamase. Blocking NagZ activity can thereby suppress β‐lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X‐ray structures of NagZ bound to the potent yet non‐selective N‐acetyl‐β‐glucosaminidase inhibitor PUGNAc (O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene) amino‐N‐phenylcarbamate), and two NagZ‐selective inhibitors – EtBuPUG, a PUGNAc derivative bearing a 2‐N‐ethylbutyryl group, and MM‐156, a 3‐N‐butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM‐156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N‐acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.  相似文献   

17.
The effect of exogenous 20‐hydroxyecdysone (20E) and juvenile hormone (JH) on the activities of the tyrosine decarboxylase (TDC), the first enzyme in octopamine (OA) synthesis, has been studied in young females of wild type D. virilis and D. melanogaster under normal and heat stress (38°C) conditions. Flies fed 20E expressed increased TDC activity in both species. JH application decreased TDC activity in both species. A rise in JH and 20E levels did not prevent a TDC response to heat stress, but changed the response intensity. A long‐term increase in JH titre had no effect on the activity of main OA catabolyzing enzyme, arylalkylamine N‐acetyltransferase, in females of both species. A possible mechanism of regulation of OA levels by 20E and JH in Drosophila females is discussed. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
We evaluated the neuroprotective effects of β‐methylphenylalanine in an experimental model of rotenone‐induced Parkinson's disease (PD) in SH‐SY5Y cells and rats. Cells were pre‐treated with rotenone (2.5 µg/mL) for 24 hours followed by β‐methylphenylalanine (1, 10 and 100 mg/L) for 72 hours. Cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), mitochondrial fragmentation, apoptosis, and mRNA and protein levels of tyrosine hydroxylase were determined. In a rat model of PD, dopamine (DA) and 3,4‐dihydroxyphenylacetic acid (DOPAC) levels, bradykinesia and tyrosine hydroxylase expression were determined. In rotenone–pre‐treated cells, β‐methylphenylalanine significantly increased cell viability and MMP, whereas ROS levels, apoptosis and fragmented mitochondria were reduced. β‐Methylphenylalanine significantly increased the mRNA and protein levels of tyrosine hydroxylase in SH‐SY5Y cells. In the rotenone‐induced rat model of PD, oral administration of β‐methylphenylalanine recovered DA and DOPAC levels and bradykinesia. β‐Methylphenylalanine significantly increased the protein expression of tyrosine hydroxylase in the striatum and substantia nigra of rats. In addition, in silico molecular docking confirmed binding between tyrosine hydroxylase and β‐methylphenylalanine. Our experimental results show neuroprotective effects of β‐methylphenylalanine via the recovery of mitochondrial damage and protection against the depletion of tyrosine hydroxylase. We propose that β‐methylphenylalanine may be useful in the treatment of PD.  相似文献   

19.
The wound-activated biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine was compared in untransformed and transgenic tobacco (Nicotiana tabacum) lines that express tryptophan decarboxylase (TDC), tyrosine decarboxylase (TYDC), or both activities. Transgenic in vitro-grown tobacco lines expressing TDC activity accumulated high levels of tryptamine but not hydroxycinnamic amides of tryptamine. In contrast, transgenic tobacco lines expressing TYDC accumulated tyramine as well as p-coumaroyltyramine and feruloyltyramine. The MeOH-soluble and cell wall fractions showed higher concentrations of wound-inducible p-coumaroyltyramine and feruloyltyramine, especially at and around wound sites, in TYDC and TDC xTYDC tobacco lines compared to wild-type or TDC lines. All the enzymes involved in the biosynthesis of hydroxycinnamic acid amides of tyramine were found to be similarly wound inducible in all tobacco genotypes investigated. These results provide experimental evidence that, under some circumstances, TYDC activity can exert a rate-limiting control over the carbon flux allocated to the biosynthesis of hydroxycinnamic acid amides of tyramine.  相似文献   

20.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号