首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   27篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   10篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   11篇
  2004年   6篇
  2003年   12篇
  2002年   2篇
  2001年   5篇
  2000年   12篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   4篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
  1966年   1篇
  1954年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
M Bandell  J S Lolkema 《Biochemistry》1999,38(32):10352-10360
The citrate transporter of Leuconostoc mesenteroides (CitP) and the malate transporter of Lactococcus lactis (MleP) are homologous proteins that catalyze citrate-lactate and malate-lactate exchange, respectively. Both transporters transport a range of substrates that contain the 2-hydroxycarboxylate motif, HO-CR(2)-COO(-) [Bandell, M., et al. (1997) J. Biol. Chem. 272, 18140-18146]. In this study, we have analyzed binding and translocation properties of CitP and MleP for a wide variety of substrates and substrate analogues. Modification of the OH or the COO(-) groups of the 2-hydroxycarboxylate motif drastically reduced the affinity of the transporters for the substrates, indicating their relevance in substrate recognition. Both CitP and MleP were strictly stereoselective when the R group contained a second carboxylate group; the S-enantiomers were efficiently bound and translocated, while the transporters had no affinity for the R-enantiomers. The affinity of the S-enantiomers, and of citrate, was at least 1 order of magnitude higher than for lactate and other substrates with uncharged R groups, indicating a specific interaction between the second carboxylate group and the protein that is responsible for high-affinity binding. MleP was not stereoselective in binding when the R groups are hydrophobic and as large as a benzyl group. However, only the S-enantiomers were translocated by MleP. CitP had a strong preference for binding and translocating the R-enantiomers of substrates with large hydrophobic R groups. These differences between CitP and MleP explain why citrate is a substrate of CitP and not of MleP. The results are discussed in the context of a model for the interaction between sites on the protein and functional groups on the substrates in the binding pockets of the two proteins.  相似文献   
2.
A structural class in the MemGen classification of membrane proteins is a set of evolutionary related proteins sharing a similar global fold. A structural class contains both closely related pairs of proteins for which homology is clear from sequence comparison and very distantly related pairs, for which it is not possible to establish homology based on sequence similarity alone. In the latter case the evolutionary link is based on hydropathy profile analysis. Here, we use these evolutionary related sets of proteins to analyze the relationship between E-values in BLAST searches, sequence similarities in multiple sequence alignments and structural similarities in hydropathy profile analyses. Two structural classes of secondary transporters termed ST[3], which includes the Ion Transporter (IT) superfamily and ST[4], which includes the DAACS family (TC# 2.A.23) were extracted from the NCBI protein database. ST[3] contains 2051 unique sequences distributed over 32 families and 59 subfamilies. ST[4] is a smaller class containing 399 unique sequences distributed over 2 families and 7 subfamilies. One subfamily in ST[4] contains a new class of binding protein dependent secondary transporters. Comparison of the averaged hydropathy profiles of the subfamilies in ST[3] and ST[4] revealed that the two classes represent different folds. Divergence of the sequences in ST[4] is much smaller than observed in ST[3], suggesting different constraints on the proteins during evolution. Analysis of the correlation between the evolutionary relationship of pairs of proteins in a class and the BLAST E-value revealed that: (i) the BLAST algorithm is unable to pick up the majority of the links between proteins in structural class ST[3], (ii) ‘low complexity filtering’ and ‘composition based statistics’ improve the specificity, but strongly reduce the sensitivity of BLAST searches for distantly related proteins, indicating that these filters are too stringent for the proteins analyzed, and (iii) the E-value cut-off, which may be used to evaluate evolutionary significance of a hit in a BLAST search is very different for the two structural classes of membrane proteins.  相似文献   
3.
Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system.  相似文献   
4.

Background  

a decline in immune and endocrine function occurs with aging. The main purpose of this study was to investigate the impact of long-term endurance training on the immune and endocrine system of elderly men. The possible interaction between these systems was also analysed.  相似文献   
5.
Resistance to treatment is the main problem of targeted treatment for cancer. We followed ten patients during treatment with vemurafenib, by three‐dimensional imaging. In all patients, only a subset of lesions progressed. Next‐generation DNA sequencing was performed on sequential biopsies in four patients to uncover mechanisms of resistance. In two patients, we identified mutations that explained resistance to vemurafenib; one of these patients had a secondary BRAF L505H mutation. This is the first observation of a secondary BRAF mutation in a vemurafenib‐resistant patient‐derived melanoma sample, which confirms the potential importance of the BRAF L505H mutation in the development of therapy resistance. Moreover, this study hints toward an important role for tumor heterogeneity in determining the outcome of targeted treatments.  相似文献   
6.
Plasmid pSEUDO and derivatives were used to show that llmg_pseudo_10 in Lactococcus lactis MG1363 and its homologous locus in L. lactis IL1403 are suitable for chromosomal integrations. L. lactis MG1363 and IL1403 nisin-induced controlled expression (NICE) system derivatives (JP9000 and IL9000) and two general stress reporter strains (NZ9000::PhrcA-GFP and NZ9000::PgroES-GFP) enabling in vivo noninvasive monitoring of cellular fitness were constructed.  相似文献   
7.
8.
Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and Results: Internal pH in W. halotolerans was measured with the sensitive probe 2′,7′–bis‐(2‐carboxyethyl)‐5(and‐6)‐carboxyfluorescein. Membrane potential was measured with the fluorescent probe 3,3′‐dipropylthiocarbocyanine iodine. Arginine and ornithine transport studies were made under several conditions, using cells loaded or not loaded with the biogenic amine putrescine. ADI pathway caused an increase in ΔpH dependent on the activity of F0F1ATPase. Ornithine decarboxylation pathway generates both a ΔpH and a ΔΨ. Both these pathways lead to the generation of a PMF. Conclusions: Weissella halotolerans W22 combines an ADI pathway and an ornithine decarboxylation pathway, conducing to the production of the biogenic amine putrescine and of a PMF. Transport studies suggest the existence of a unique antiporter arginine/putrescine in this lactic acid bacteria strain. Significance and Impact of the Study: The coexistence of two different types of amino acid catabolic pathways, leading to the formation of a PMF, is shown for a Weissella strain for the first time. Moreover, a unique antiport arginine/putrescine is hypothesized to be present in this food strain.  相似文献   
9.
10.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a sialylated glycoprotein's serum half-life and possibly its function. We evaluated the linearity, sensitivity, reproducibility, and accuracy of a HPAEC/PAD method to determine its suitability for routine simultaneous analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective internal standard for this analysis is 3-deoxy-d-glycero-d- galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au working electrode recession and determined that linear range and sensitivity were dependent on electrode recession. Using an electrode that was 350 &mgr;m recessed from the electrode block, the minimum detection limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of standards was linear from 10 to 500 pmol (r2>0.99) regardless of electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was unaffected when injections of glycoprotein neuraminidase and acid digestions were interspersed with standard injections. Area RSDs of Neu5Ac and Neu5Gc improved when the internal standard was used. We determined the precision and accuracy of this method for both a recessed and a new working electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and bovine and human transferrins. Results were consistent with published values and independent of the working electrode. The sensitivity, reproducibility, and accuracy of this method make it suitable for direct routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号