首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The third variable region (V3) of the envelope protein of human immunodeficiency virus type 1 (HIV-1) contains group- and type-specific epitopes for neutralizing antibodies and contains determinants involved in viral tropism and syncytium-inducing (SI) activity. We studied the in vivo relationship between V3 sequences and viral phenotypes in 24 perinatally HIV-1-infected children. To avoid in vitro selection of intrapatient minor variants, genetic studies were performed directly on uncultured peripheral blood mononuclear cells (PBMC), and the tropisms of HIV-1 isolates were evaluated by culturing patients' PBMC directly with monocyte-derived macrophages, lymphocytes, and MT-2 cells. According to their phenotypes, we could define five types of primary isolates: (i) non-syncytium-inducing (NSI) macrophagetropic, (ii) NSI macrophage-lymphotropic, (iii) NSI lymphotropic, (iv) SI lympho-T-cell line-tropic, and (v) SI pleiotropic. The SI viral phenotype was correlated with a more advanced status of disease. Genetic analysis of intrapatient molecular variants revealed that no relationship between the degree of intrapatient V3 variability and the pattern of viral tropism existed; moreover, within a single patient, the values for V3 variability between CD4+ lymphocytes and CD14+ monocytes were similar, thus suggesting that in vivo variability of the monocytotropic variants is more extensive than previously appreciated. A comparison between the intrapatient major variants and the phenotype of primary isolates disclosed that a negatively charged amino acid at residue site 25 was associated with an NSI macrophage- and macrophage-lymphotropic viral phenotype. Finally, by comparing the V3 sequences derived from our study population with those of several prototypes, we observed that the majority of isolates circulating in Italy are related to the North American subtype B macrophagetropic isolates.  相似文献   

2.
We examined the relationship between the amino acid sequences of the V2 and V3 regions of the envelope protein and the biological properties of ten human immunodeficiency virus type 1 (HIV-1) primary isolates. The infectivity, cytopathic effect (CPE), and syncytium forming activity of these primary isolates were tested against three T cell lines (CEM, MT2, and MOLT4/CL.8 cells), CD8-depleted peripheral blood mononuclear cells (PBMC), and primary monocyte-derived macrophages (MDM) from seronegative donors. In addition to the viral groups which had the syncytium inducing/T-cell line tropic (SI/TT) phenotype or non-syncytium inducing/non-T cell line tropic (NSI/NT) phenotype (including the NSI/macrophage tropic (NSI/MT) phenotype), there was a group of viruses that infected one or two T cell lines and PBMC but could not mediate syncytium formation. We therefore classified this group of viruses as a non-syncytium inducing/partial T-cell line tropic (NSI/pTT) virus. To investigate the relationship between these viral phenotypes and the sequence variability of the V2 and V3 regions of the envelope, we cloned the viral gene segment and sequenced the individual isolates. The sequence data suggested that the SI/TT type changes in the V3 sequence alone mediate a partial T cell line tropism and mild cytopathic effect and that an isolate became more virulent (SI/TT phenotype) if there were additional changes in the V2 or other regions. On the other hand, sequence changes in the V2 region alone could not mediate phenotypic changes but some additional changes in the other variable regions (for example, V3) might be required for the phenotypic changes in combination with changes in V2. These findings also suggested that amino acid changes in both the V2 and V3 region are required for the development of virulent variants of HIV-1 that outgrow during advanced stages of the disease.  相似文献   

3.
To investigate the temporal relationship between human immunodeficiency virus type 1 (HIV-1) replicative capacity and syncytium-inducing (SI) phenotype, biological and genetic characteristics of longitudinally obtained virus clones from two HIV-1-infected individuals who developed SI variants were studied. In one individual, the emergence of rapidly replicating SI and non-syncytium-inducing (NSI) variants was accompanied by a loss of the slowly replicating NSI variants. In the other subject, NSI variants were always slowly replicating, while the coexisting SI variants showed an increase in the rate of replication. Irrespective their replicative capacity, the NSI variants remained present throughout the infection in both individuals. Phylogenetic analysis of the V3 region showed early branching of the SI variants from the NSI tree. Successful SI conversion seemed a unique event since no SI variants were found among later-stage NSI variants. This was also confirmed by the increasing evolutionary distance between the two subpopulations. At any time point during the course of the infection, the variation within the coexisting SI and NSI populations did not exceed 2%, indicating continuous competition within each viral subpopulation.  相似文献   

4.
HIV-1的表型及其感染的细胞嗜性   总被引:2,自引:0,他引:2  
张驰宇 《动物学研究》2004,25(4):363-368
HIV-1的表型分为合胞体诱导型(syncytium-inducing,SI)和非合胞体诱导型(non-syncytium-inducing,NSI)。依据所用辅助受体和感染靶细胞的不同,HIV-1又被分为R5、X4和R5X4型。R5和X4型病毒分别利用CCR5和CXCR4作为辅助受体,而R5X4型病毒可利用这两种辅助受体。在病毒的复制力、细胞嗜性以及合胞体诱导能力上,SI型与X4型病毒一致,NSI型与R5型病毒一致。在HIV-1感染过程中,疾病的发展伴随着病毒从NSI型向SI型、及R5型向X4型的转变。HIV-1的表型影响和决定着HIV-1的感染、传播及AIDS的疾病进程。HIV-1的表型和细胞嗜性主要由病毒gp120的V3区(特别是第11和25位的氨基酸)决定。V3区的氨基酸序列信息,将为预测HIV-1的表型,以及病毒感染后的疾病进程提供生物信息学的依据。  相似文献   

5.
Despite multiple, high-risk sexual exposures, some individuals remain uninfected with human immunodeficiency virus type 1 (HIV-1). CD4+ lymphocytes from these individuals are less susceptible to infection in vitro with some strains of HIV-1, suggesting that the phenotype of the virus may influence its ability to interact with certain CD4+ cells. In the present study, we examined the susceptibility of CD4+ T lymphocytes and macrophages from two exposed uninfected individuals (EU2 and EU3) to infection with a panel of biologically cloned isolates of HIV-1 having either a non-syncytium-inducing (NSI) or a syncytium-inducing (SI) phenotype. Our results indicate that CD4+ T lymphocytes from EU2 and EU3 are resistant to infection with NSI isolates of HIV-1 but are susceptible to infection with primary SI isolates. In addition, we found that macrophages from EU2 and EU3 are resistant to infection with both NSI and SI isolates. The latter finding was confirmed by using several uncloned NSI and SI isolates obtained from patients during acute HIV-1 infection. In further experiments, env clones encoding glycoproteins characteristic of NSI or SI viruses were used in single-cycle infectivity assays to evaluate infection of CD4+ lymphocytes and macrophages from EU2 and EU3. Consistent with our previous results, we found that macrophages from these individuals are resistant to infection with NSI and SI env-pseudotyped viruses, while CD4+ T lymphocytes are resistant to NSI, but not SI, pseudotyped viruses. Overall, our results demonstrate that CD4+ cells from two exposed uninfected individuals resist infection in vitro with primary, macrophage-tropic, NSI isolates of HIV-1, which is the predominant viral phenotype found following HIV-1 transmission. Furthermore, infection with NSI isolates was blocked in both CD4+ T lymphocytes and macrophages from these individuals, suggesting that there may be a common mechanism for resistance in both cell types.  相似文献   

6.
Previously, we and others have demonstrated a relation between the clinical course of human immunodeficiency virus type 1 (HIV-1) infection and biological properties of HIV-1 variants such as replication rate, syncytium-inducing (SI) capacity, and cytotropism. For the molecular analysis of the biological variability in these properties, we generated a panel of phenotypically distinct yet genetically highly homologous infectious molecular clones. These clones were derived from HIV-1 isolates, mostly recovered by direct clonal isolation, from a single individual in whom a transition from non-SI to SI isolates had been identified over time. Of 17 molecular clones tested, 8 were infectious. The clones exhibited differences in SI capacity and T-cell line tropism. Their phenotypes corresponded to those of their parental isolates, formally demonstrating that biological variability of HIV-1 isolates can be attributed to single molecular clones. With these clones we demonstrated that SI capacity and tropism for the H9 T-cell line, almost invariably coupled in primary HIV-1 isolates, are discernible properties. Also different requirements appeared to exist for H9 and Sup T1 cell line tropism. We obtained evidence that T-cell line tropism is not caused by differences in level of HIV-1 expression but most probably is restricted at the level of virus entry. Restriction mapping of four clones with divergent phenotypes revealed a high degree of nucleotide sequence homology (over 96.3%), indicating the usefulness of these clones for the tracking of genetic variability critical for differences in biological phenotype.  相似文献   

7.
The composition of human immunodeficiency virus type 1 (HIV-1) clonal populations at different stages of infection and in different compartments was analyzed. Biological HIV-1 clones were obtained by primary isolation from patient peripheral blood mononuclear cells under limiting dilution conditions, with either blood donor peripheral blood lymphocytes or monocyte-derived macrophages (MDM) as target cells, and the biological phenotype of the clones was analyzed. In asymptomatic individuals, low frequencies of HIV-1 clones were observed. These clones were non-syncytium inducing and preferentially monocytotropic. In individuals progressing to disease, a 100-fold increase in frequencies of productively HIV-1-infected cells was observed as a result of a selective expansion of nonmonocytotropic clones. In a person progressing to AIDS within 19 months after infection, only syncytium-inducing clones were detected, shifting from MDM-tropic to non-MDM-tropic over time. From his virus donor, a patient with wasting syndrome, only syncytium-inducing clones, mostly non-MDM-tropic, were recovered. Parallel clonal analysis of HIV-1 populations in cells present in bronchoalveolar lavage fluid and peripheral blood from an AIDS patient revealed a qualitatively and quantitatively more monocytotropic virus population in the lung compartment than in peripheral blood at the same time point. These findings indicate that monocytotropic HIV-1 clones, probably generated in the tissues, are responsible for the persistence of HIV-1 infection and that progression of HIV-1 infection is associated with a selective increase of T-cell-tropic, nonmonocytotropic HIV-1 variants in peripheral blood.  相似文献   

8.
Several studies have demonstrated that during HIV-1 infection many different viral clones may co-exist in the same individual. These clones may differ regarding their biological phenotype and may influence both the natural history of infection and the clinical response to antiretroviral therapy. The aim of the present study was to investigate the influences of combination therapies including protease inhibitors (HAART) on the phenotypical pattern of HIV-1 biological clones in peripheral blood mononuclear cells. Viral isolation and biological characterisation of bulk isolates and clonal viral isolates were performed on two AIDS patients, before and after three months of antiretroviral therapy. A decrease of viral load in plasma specimens in association with a change of clonal composition during antiretroviral therapy was observed in both patients during treatment. Before therapy both of the patients had a syncytium inducing (SI) bulk isolate and the majority of the biological clones were characterised as SI. After treatment, the bulk isolates were still SI in both cases, but the majority of biological clones were characterised as non-syncytium inducing (NSI). These results suggest that HIV clonal composition and relative phenotypic pattern undergo different changes not only during the natural course of HIV infection but also while patients are on antiretroviral combination therapy.  相似文献   

9.
Clinical deterioration in human immunodeficiency virus type 1 (HIV-1) disease is associated with an increased viral burden in the peripheral blood and a loss of circulating CD4+ T cells. HIV-1 isolates obtained prior to this stage of disease often have a "slow-low," non-syncytium-inducing (NSI) phenotype, whereas those obtained afterwards are often characterized as "rapid-high" and syncytium inducing (SI). Paired NSI and SI isolates from two different patients were inoculated into the human thymus implants of SCID-hu mice. The two slow-low, NSI isolates replicated to minimal levels in the grafts and did not induce thymocyte depletion. In contrast, the two SI isolates from the same patients showed high levels of viral replication and induced a marked degree of thymocyte depletion, accompanied by evidence of programmed cell death. These observations reveal a correlation between the replicative and cytopathic patterns of HIV-1 isolates in vitro and in the SCID-hu mouse in vivo and provide direct evidence that the biological phenotype of HIV-1 switch may be a causal and not a derivative correlate of HIV-1 disease progression.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) primary infection is characterized by the use of CCR5 as a coreceptor for viral entry, which is associated with the non-syncytium-inducing (NSI) phenotype in lymphoid cells. Syncytium-inducing (SI) variants of HIV-1 appear in advanced stages of HIV-1 infection and are characterized by the use of CXCR4 as a coreceptor. The emergence of SI variants is accompanied by a rapid decrease in the number of T cells. However, it is unclear why SI variants emerge and what factors trigger the evolution of HIV from R5 to X4 variants. Interleukin-7 (IL-7), a cytokine produced by stromal cells of the thymus and bone marrow and by keratin, is known to play a key role in T-cell development. We evaluated IL-7 levels in plasma of healthy donors and HIV-positive patients and found significantly higher levels in HIV-positive patients. There was a negative correlation between circulating IL-7 levels and CD4(+) T-cell count in HIV-positive patients (r = -0.621; P < 0.001), suggesting that IL-7 may be involved in HIV-induced T-cell depletion and disease progression. IL-7 levels were higher in individuals who harbored SI variants and who had progressed to having CD4 cell counts of lower than 200 cells/microl than in individuals with NSI variants at a similar stage of disease. IL-7 induced T-cell proliferation and up-regulated CXCR4 expression in peripheral blood mononuclear cells in vitro. Taken together, our results suggest a role for IL-7 in the maintenance of T-cell regeneration and depletion by HIV in infected individuals and a possible relationship between IL-7 levels and the emergence of SI variants.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) variants passaged in T-cell lines, often called laboratory isolates, are potently neutralized by soluble CD4 (sCD4), whereas primary HIV-1 variants are highly resistant to sCD4 neutralization. Previously, it was demonstrated that the domain from V1 to V3 of the HIV-1 gp120 molecule contains one of the major determinants of sCD4 neutralization sensitivity, and the same region has also been implicated as influencing syncytium-inducing (SI) capacity and T-cell-line tropism. To determine possible differences in sCD4 neutralization sensitivity between phenotypically distinct primary HIV-1 variants, a panel of non-syncytium-inducing (NSI) and SI HIV-1 variants was studied. Primary NSI and SI HIV-1 variants appeared to be equally resistant to sCD4 neutralization. Consistent with this observation, sCD4 did not induce gp120 shedding from either primary NSI or SI HIV-1 variants at 37 degrees C. Thus, it is not the potential of certain primary HIV-1 variants to infect T-cell lines but rather their adaptation to T-cell lines that is reflected in specific properties of the viral envelope which influence sCD4 neutralization sensitivity.  相似文献   

12.
One of the phenotypic distinctions between different strains of human immunodeficiency virus type 1 (HIV-1) has to do with the ability to cause target cells to form large multinucleate bodies known as syncytia. There are two phenotypes according to this characterization: syncytium-inducing (SI) and non-syncytium-inducing (NSI). NSI strains are usually present throughout infection, while SI strains are typically seen at the beginning of the infection and near the onset of AIDS. The late emergence of SI strains is referred to as phenotype switching. In this paper we analyse the factors that lead to phenotype switching and contribute to the dynamics of disease progression. We show that a strong immune system selects for NSI strains while a weak immune system favours SI strains. The model explicitly accounts for the fact that CD4+ cells are both targets of HIV infection and crucial for activating immune responses against HIV In such a model, SI strains can emerge after a long and variable period of NSI dominated infection. Furthermore, versions of the model which do not explicitly account for HIV-specific, activated CD4+ cells do not exhibit phenotype switching, emphasizing the critical importance of this pool of cells.  相似文献   

13.
The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages.  相似文献   

14.
This study was designed to examine the impact of human immunodeficiency virus type 1 (HIV-1) fitness on disease progression through the use of a dual competition/heteroduplex tracking assay (HTA). Despite numerous studies on the impact of HIV-1 diversity and HIV-specific immune response on disease progression, we still do not have a firm understanding of the long-term pathogenesis of this virus. Strong and early CD8-positive cytotoxic T-cell and CD4-positive T-helper cell responses directed toward HIV-infected cells appear to curb HIV pathogenesis. However, the rate at which the virus infects the CD4(+) T-cell population and possibly destroys the HIV-specific immune response may also alter the rate of disease progression. For HIV-1 fitness studies, we established conditions for dual HIV-1 infections of peripheral blood mononuclear cells (PBMC) and a sensitive HTA to measure relative virus production. A pairwise comparison was then performed to estimate the relative fitness of various non-syncytium-inducing/CCR5-tropic (NSI/R5) and syncytium-inducing/CXCR4-tropic (SI/X4) HIV-1 isolates. Four HIV-1 strains (two NSI/R5 and two SI/X4) with moderate ex vivo fitness were then selected as controls and competed against primary HIV-1 isolates from an HIV-infected Belgian cohort. HIV-1 isolates from long-term survivors (LTS) were outcompeted by control strains and were significantly less fit than HIV-1 isolates from patients with accelerated progression to AIDS (PRO). In addition, NSI/R5 HIV-1 isolates from PRO overgrew control SI/X4 strains, suggesting that not all SI/X4 HIV-1 isolates replicate more efficiently than all NSI/R5 isolates. Finally, there were strong, independent correlations between viral load and the total relative fitness values of HIV-1 isolates from PRO (r = 0.84, P = 0.033) and LTS (r = 0.86, P = 0.028). Separation of the PRO and LTS plots suggest that HIV-1 fitness together with viral load may be a strong predictor for the rate of disease progression.  相似文献   

15.
The third variable (V3) domain has been implicated in determining the human immunodeficiency virus (HIV) phenotype, including fusion capacity and monocytotropism. In a large set of primary HIV type 1 (HIV-1) isolates, V3 sequence analysis revealed that fast-replicating, syncytium-inducing isolates contained V3 sequences with a significantly higher positive charge than those of slow-replicating, non-syncytium-inducing monocytotropic isolates. It appeared that these differences in charge could be attributed to highly variable amino acid residues located on either side of the V3 loop, midway between the cysteine residues and the central GPG motif. In non-syncytium-inducing monocytotropic isolates, these residues were negatively charged or uncharged, whereas in syncytium-inducing nonmonocytotropic isolates, either one or both were positively charged. The substitutions at these positions result in changes in the predicted secondary structure of the V3 loop. Our data suggest that two amino acid residues in the highly variable V3 domain are responsible for phenotype differences and point to conformational differences in V3 loops from phenotypically distinct HIV-1 isolates.  相似文献   

16.
In a human immunodeficiency virus type 1 (HIV-1)-infected individual, immune-pressure-mediated positive selection operates to maintain the antigenic polymorphism on the gp120 third variable (V3) loop. Recently, we suggested on the basis of sequencing C2/V3 segments from an HIV-1 subtype E-infected family that a V3 sequence lineage group of the non-syncytium-inducing (NSI) variants (group 1) was relatively resistant to positive selection pressure (35). To better understand the relationship between the intensity of positive selection pressure and cell tropism of the virus, we determined the linkage between each V3 genotype and its function of directing coreceptor preference and MT2 cell tropism. The biological characterization of a panel of V3 recombinant viruses showed that all of the group 1 V3 sequences could confer an NSI/CCR5-using (NSI/R5) phenotype on HIV-1(LAI), whereas the group 2 V3 sequence, which was more positively charged than the group 1 sequence, dictated mainly a syncytium-inducing, CXCR4-using (SI/X4) phenotype. Phylogenetic analysis of C2/V3 sequences encoding group 1 or 2 V3 suggested that the variants carrying group 1 V3 are the ancestors of the intrafamilial infection and persisted in the family, while the variants carrying group 2 V3 evolved convergently from the group 1 V3 variants during disease progression in the individuals. Finally, a statistical test showed that the V3 sequence that could dictate an NSI/R5 phenotype had a synonymous substitution rate significantly higher than the nonsynonymous substitution rate. These data suggest that V3 sequences of the subtype E NSI/R5 variants are more resistant to positive selection pressure than those of the SI/X4 variants.  相似文献   

17.
Syncytium-inducing (SI) variants of human immunodeficiency virus type 1 (HIV-1) are evolutionary variants that are associated with rapid CD4+ cell loss and rapid disease progression. The heteroduplex tracking assay (HTA) was used to detect evolutionary V3 variants by amplifying the V3 sequences from viral RNA derived from 50 samples of patient plasma. For this V3-specific HTA (V3-HTA), heteroduplexes were formed between the patient V3 sequences and a probe with the subtype B consensus V3 sequence. Evolution was then measured by divergence from the consensus. The presence of evolutionary variants was correlated with SI detection data on the same samples from the MT-2 cell culture assay. Evolutionary variants were correlated with the SI phenotype in 88% of the samples, and 96% of the SI samples contained evolutionary variants. In most cases the evolutionary V3 variants represented discrete clonal outgrowths of virus. Sequence analysis of the six discordant samples that did not show this correlation indicated that three non-syncytium-inducing (NSI) samples had V3 sequences that had evolved away from the consensus sequence but not toward an SI genotype. A fourth sample showed little evolution away from the consensus but was SI, which indicates that not all SI variants require basic substitutions in V3. The other two samples had SI-like genotypes and NSI phenotypes, suggesting that V3-HTA was able to detect SI emergence in these samples in the absence of their detection in vitro. V3-HTA was also used to confirm SI variant selection in MT-2 cells and to examine the possibility of variant selection during virus culture in peripheral blood cells.  相似文献   

18.
To study risk factors for homosexual transmission of human immunodeficiency virus type 1 (HIV-1), we compared 10 monogamous homosexual couples between whom transmission of HIV-1 had occurred with 10 monogamous homosexual couples between whom HIV-1 transmission had not occurred despite high-risk sexual behavior. In the group of individuals who did not transmit virus, peripheral cellular infectious load was lower and the CD4+ T-cell counts were higher than in the group of transmitters. HIV-1 RNA levels in serum did not differ between transmitters and nontransmitters. Compared with peripheral blood mononuclear cells (PBMC) from normal healthy blood donors, 8 of 10 nonrecipients and only 3 of 8 recipients had PBMC with reduced susceptibility to in vitro infection with non-syncytium-inducing (NSI) HIV-1 variants isolated from either their respective partners or an unrelated individual. No difference in susceptibility was observed for infection with a syncytium-inducing variant. Among the individuals who had PBMC with reduced susceptibility, five nonrecipients and one recipient had PBMC that were equally or even less susceptible to NSI variants than PBMC that had low susceptibility and that were derived from healthy blood donors that were heterozygous for a 32-bp deletion in the CCR5 gene (CCR5 Δ32). Three of these individuals (all nonrecipients) had a CCR5 Δ32 heterozygous genotype themselves, confirming an association between low susceptibility to NSI variants and CCR5 Δ32 heterozygosity. All three recipients with less susceptible PBMC had partners with a high infectious cellular load; inversely, both nonrecipients with normally susceptible PBMC had partners with a very low infectious cellular load. These results suggest that a combination of susceptibility of target cells and inoculum size upon homosexual exposure largely determines whether HIV-1 infection is established.  相似文献   

19.
Sequential human immunodeficiency virus (HIV) isolates, recovered from a panel of longitudinally collected peripheral blood mononuclear cells obtained from 20 initially asymptomatic HIV-seropositive homosexual men, were studied for differences in replication rate, syncytium-inducing capacity, and host range. Eleven individuals remained asymptomatic; nine progressed to acquired immunodeficiency syndrome (AIDS) or AIDS-related complex (ARC) at the time point at which the last HIV isolate was obtained. In 16 individuals, only non-syncytium-inducing (NSI) isolates, with a host range restricted to mononuclear cells, were observed. From four individuals, high-replicating, syncytium-inducing (SI) isolates that could be transmitted to the H9, RC2A, and U937 cell lines were recovered. From two of these four individuals, SI isolates were obtained throughout the observation period. In the two others, a transition from NSI to SI HIV isolates was observed during the period of study. Three of these four individuals developed ARC or AIDS 9 to 15 months after the first isolation of an SI isolate. With the exception of the two individuals in whom a transition from NSI to SI isolates was observed, within a given individual the replication rate of sequential HIV isolates was constant. A significant correlation was found between the mean replication rate of isolates obtained from an individual and the rate of CD4+ cell decrease observed in this individual. In individuals with low-replicating HIV isolates, no significant CD4+ cell loss was observed. In contrast, recovery of high-replicating isolates, in particular when these were SI isolates, was associated with rapid decline of CD4+ cell numbers and development of ARC or AIDS. These findings indicate that variability in the biological properties of HIV isolates is one of the factors influencing the course of HIV infection.  相似文献   

20.
A number of human immunodeficiency virus type 1 (HIV-1) non-B-subtype products have been developed for present or future vaccine trials; in Thailand, several studies using subtype B and/or CRF01_AE vaccines have been conducted. To better characterize the biologic properties of these subtypes, 70 HIV-1 subtype B and E isolates were phenotyped as syncytium-inducing (SI) or non-syncytium-inducing (NSI) isolates and assessed for sensitivity to neutralizing antibody (NAb). A significantly higher number of NSI subtype E viruses were neutralization sensitive than SI subtype E viruses (P = 0.009), while no association between viral phenotype and sensitivity to NAb was observed for subtype B (P = 0.856), suggesting a difference in the neutralization patterns of subtypes B and E. Strikingly, concurrent CD4 T-cell numbers were significantly lower for subtype E-infected patients whose isolates were more resistant to NAb, both for the overall study group (P < 0.001) as well as for the 22 patients with NSI isolates (P = 0.013). Characterization of the evolution of biologic properties of both B and non-B HIV-1 subtypes will provide a clearer understanding of the repertoire of antibodies that must be elicited for a vaccine to be effective against all phenotypes and subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号