首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The third variable region (V3) of the envelope protein of human immunodeficiency virus type 1 (HIV-1) contains group- and type-specific epitopes for neutralizing antibodies and contains determinants involved in viral tropism and syncytium-inducing (SI) activity. We studied the in vivo relationship between V3 sequences and viral phenotypes in 24 perinatally HIV-1-infected children. To avoid in vitro selection of intrapatient minor variants, genetic studies were performed directly on uncultured peripheral blood mononuclear cells (PBMC), and the tropisms of HIV-1 isolates were evaluated by culturing patients' PBMC directly with monocyte-derived macrophages, lymphocytes, and MT-2 cells. According to their phenotypes, we could define five types of primary isolates: (i) non-syncytium-inducing (NSI) macrophagetropic, (ii) NSI macrophage-lymphotropic, (iii) NSI lymphotropic, (iv) SI lympho-T-cell line-tropic, and (v) SI pleiotropic. The SI viral phenotype was correlated with a more advanced status of disease. Genetic analysis of intrapatient molecular variants revealed that no relationship between the degree of intrapatient V3 variability and the pattern of viral tropism existed; moreover, within a single patient, the values for V3 variability between CD4+ lymphocytes and CD14+ monocytes were similar, thus suggesting that in vivo variability of the monocytotropic variants is more extensive than previously appreciated. A comparison between the intrapatient major variants and the phenotype of primary isolates disclosed that a negatively charged amino acid at residue site 25 was associated with an NSI macrophage- and macrophage-lymphotropic viral phenotype. Finally, by comparing the V3 sequences derived from our study population with those of several prototypes, we observed that the majority of isolates circulating in Italy are related to the North American subtype B macrophagetropic isolates.  相似文献   

2.
3.
Syncytium-inducing (SI) variants of human immunodeficiency virus type 1 (HIV-1) are evolutionary variants that are associated with rapid CD4+ cell loss and rapid disease progression. The heteroduplex tracking assay (HTA) was used to detect evolutionary V3 variants by amplifying the V3 sequences from viral RNA derived from 50 samples of patient plasma. For this V3-specific HTA (V3-HTA), heteroduplexes were formed between the patient V3 sequences and a probe with the subtype B consensus V3 sequence. Evolution was then measured by divergence from the consensus. The presence of evolutionary variants was correlated with SI detection data on the same samples from the MT-2 cell culture assay. Evolutionary variants were correlated with the SI phenotype in 88% of the samples, and 96% of the SI samples contained evolutionary variants. In most cases the evolutionary V3 variants represented discrete clonal outgrowths of virus. Sequence analysis of the six discordant samples that did not show this correlation indicated that three non-syncytium-inducing (NSI) samples had V3 sequences that had evolved away from the consensus sequence but not toward an SI genotype. A fourth sample showed little evolution away from the consensus but was SI, which indicates that not all SI variants require basic substitutions in V3. The other two samples had SI-like genotypes and NSI phenotypes, suggesting that V3-HTA was able to detect SI emergence in these samples in the absence of their detection in vitro. V3-HTA was also used to confirm SI variant selection in MT-2 cells and to examine the possibility of variant selection during virus culture in peripheral blood cells.  相似文献   

4.
HIV-1的表型及其感染的细胞嗜性   总被引:2,自引:0,他引:2  
张驰宇 《动物学研究》2004,25(4):363-368
HIV-1的表型分为合胞体诱导型(syncytium-inducing,SI)和非合胞体诱导型(non-syncytium-inducing,NSI)。依据所用辅助受体和感染靶细胞的不同,HIV-1又被分为R5、X4和R5X4型。R5和X4型病毒分别利用CCR5和CXCR4作为辅助受体,而R5X4型病毒可利用这两种辅助受体。在病毒的复制力、细胞嗜性以及合胞体诱导能力上,SI型与X4型病毒一致,NSI型与R5型病毒一致。在HIV-1感染过程中,疾病的发展伴随着病毒从NSI型向SI型、及R5型向X4型的转变。HIV-1的表型影响和决定着HIV-1的感染、传播及AIDS的疾病进程。HIV-1的表型和细胞嗜性主要由病毒gp120的V3区(特别是第11和25位的氨基酸)决定。V3区的氨基酸序列信息,将为预测HIV-1的表型,以及病毒感染后的疾病进程提供生物信息学的依据。  相似文献   

5.
We examined the relationship between the amino acid sequences of the V2 and V3 regions of the envelope protein and the biological properties of ten human immunodeficiency virus type 1 (HIV-1) primary isolates. The infectivity, cytopathic effect (CPE), and syncytium forming activity of these primary isolates were tested against three T cell lines (CEM, MT2, and MOLT4/CL.8 cells), CD8-depleted peripheral blood mononuclear cells (PBMC), and primary monocyte-derived macrophages (MDM) from seronegative donors. In addition to the viral groups which had the syncytium inducing/T-cell line tropic (SI/TT) phenotype or non-syncytium inducing/non-T cell line tropic (NSI/NT) phenotype (including the NSI/macrophage tropic (NSI/MT) phenotype), there was a group of viruses that infected one or two T cell lines and PBMC but could not mediate syncytium formation. We therefore classified this group of viruses as a non-syncytium inducing/partial T-cell line tropic (NSI/pTT) virus. To investigate the relationship between these viral phenotypes and the sequence variability of the V2 and V3 regions of the envelope, we cloned the viral gene segment and sequenced the individual isolates. The sequence data suggested that the SI/TT type changes in the V3 sequence alone mediate a partial T cell line tropism and mild cytopathic effect and that an isolate became more virulent (SI/TT phenotype) if there were additional changes in the V2 or other regions. On the other hand, sequence changes in the V2 region alone could not mediate phenotypic changes but some additional changes in the other variable regions (for example, V3) might be required for the phenotypic changes in combination with changes in V2. These findings also suggested that amino acid changes in both the V2 and V3 region are required for the development of virulent variants of HIV-1 that outgrow during advanced stages of the disease.  相似文献   

6.
In human immunodeficiency virus type 1 (HIV-1) subtype B, CXCR4 coreceptor use ranges from approximately 20% in early infection to approximately 50% in advanced disease. Coreceptor use by non-subtype B HIV is less well characterized. We studied coreceptor tropism of subtype A and D HIV-1 collected from 68 pregnant, antiretroviral drug-naive Ugandan women (HIVNET 012 trial). None of 33 subtype A or 10 A/D-recombinant viruses used the CXCR4 coreceptor. In contrast, nine (36%) of 25 subtype D viruses used both CXCR4 and CCR5 coreceptors. Clonal analyses of the nine subtype D samples with dual or mixed tropism revealed heterogeneous viral populations comprised of X4-, R5-, and dual-tropic HIV-1 variants. In five of the six samples with dual-tropic strains, V3 loop sequences of dual-tropic clones were identical to those of cocirculating R5-tropic clones, indicating the presence of CXCR4 tropism determinants outside of the V3 loop. These dual-tropic variants with R5-tropic-like V3 loops, which we designated "dual-R," use CCR5 much more efficiently than CXCR4, in contrast to dual-tropic clones with X4-tropic-like V3 loops ("dual-X"). These observations have implications for pathogenesis and treatment of subtype D-infected individuals, for the association between V3 sequence and coreceptor tropism phenotype, and for understanding potential mechanisms of evolution from exclusive CCR5 use to efficient CXCR4 use by subtype D HIV-1.  相似文献   

7.
Human Immunodeficiency Virus Type 1 Populations in Blood and Semen   总被引:10,自引:7,他引:3       下载免费PDF全文
Transmission of human immunodeficiency virus type 1 (HIV-1) usually results in outgrowth of viruses with macrophage-tropic phenotype and consensus non-syncytium-inducing (NSI) V3 loop sequences, despite the presence of virus with broader host range and the syncytium-inducing (SI) phenotype in the blood of many donors. We examined proviruses in contemporaneous peripheral blood mononuclear cells (PBMC) and nonspermatozoal semen mononuclear cells (NSMC) of five HIV-1-infected individuals to determine if this preferential outgrowth could be due to compartmentalization and thus preferential transmission of viruses of the NSI phenotype from the male genital tract. Phylogenetic reconstructions of ~700-bp sequences covering the second constant region through the fifth variable region (C2 to V5) of the viral envelope gene revealed distinct variant populations in the blood versus the semen in two patients with AIDS and in one asymptomatic individual (patient 613), whereas similar variant populations were found in both compartments in two other asymptomatic individuals. Variants with amino acids in the V3 loop that predict the SI phenotype were found in both AIDS patients and in patient 613; however, the distribution of these variants between the two compartments was not consistent. SI variants were found only in the PBMC of one AIDS patient but only in the NSMC of the other, while they were found in both compartments in patient 613. It is therefore unlikely that restriction of SI variants from the male genital tract accounts for the observed NSI transmission bias. Furthermore, no evidence for a semen-specific signature amino acid sequence was detected.  相似文献   

8.
HIV-1 co-receptor tropism is central for understanding the transmission and pathogenesis of HIV-1 infection. We performed a genome-wide comparison between the adaptive evolution of R5 and X4 variants from HIV-1 subtypes B and C. The results showed that R5 and X4 variants experienced differential evolutionary patterns and different HIV-1 genes encountered various positive selection pressures, suggesting that complex selection pressures are driving HIV-1 evolution. Compared with other hypervariable regions of Gp120, significantly more positively selected sites were detected in the V3 region of subtype B X4 variants, V2 region of subtype B R5 variants, and V1 and V4 regions of subtype C X4 variants, indicating an association of positive selection with co-receptor recognition/binding. Intriguingly, a significantly higher proportion (33.3% and 55.6%, P<0.05) of positively selected sites were identified in the C3 region than other conserved regions of Gp120 in all the analyzed HIV-1 variants, indicating that the C3 region might be more important to HIV-1 adaptation than previously thought. Approximately half of the positively selected sites identified in the env gene were identical between R5 and X4 variants. There were three common positively selected sites (96, 113 and 281) identified in Gp41 of all X4 and R5 variants from subtypes B and C. These sites might not only suggest a functional importance in viral survival and adaptation, but also imply a potential cross-immunogenicity between HIV-1 R5 and X4 variants, which has important implications for AIDS vaccine development.  相似文献   

9.
10.
In human immunodeficiency virus type 1 (HIV-1) subtype B infections, the emergence of viruses able to use CXCR4 as a coreceptor is well documented and associated with accelerated CD4 decline and disease progression. However, in HIV-1 subtype C infections, responsible for more than 50% of global infections, CXCR4 usage is less common, even in individuals with advanced disease. A reliable phenotype prediction method based on genetic sequence analysis could provide a rapid and less expensive approach to identify possible CXCR4 variants and thus increase our understanding of subtype C coreceptor usage. For subtype B V3 loop sequences, genotypic predictors have been developed based on position-specific scoring matrices (PSSM). In this study, we apply this methodology to a training set of 279 subtype C sequences of known phenotypes (228 non-syncytium-inducing [NSI] CCR5+ and 51 SI CXCR4+ sequences) to derive a C-PSSM predictor. Specificity and sensitivity distributions were estimated by combining data set bootstrapping with leave-one-out cross-validation, with random sampling of single sequences from individuals on each bootstrap iteration. The C-PSSM had an estimated specificity of 94% (confidence interval [CI], 92% to 96%) and a sensitivity of 75% (CI, 68% to 82%), which is significantly more sensitive than predictions based on other methods, including a commonly used method based on the presence of positively charged residues (sensitivity, 47.8%). A specificity of 83% and a sensitivity of 83% were achieved with a validation set of 24 SI and 47 NSI unique subtype C sequences. The C-PSSM performs as well on subtype C V3 loops as existing subtype B-specific methods do on subtype B V3 loops. We present bioinformatic evidence that particular sites may influence coreceptor usage differently, depending on the subtype.  相似文献   

11.
Primary human immunodeficiency virus type 1 (HIV-1) isolates were obtained from 22 patients with AIDS from northern Thailand, where HIV-1 is transmitted primarily through the heterosexual route. Viral sequences were determined for the 22 patients with AIDS, and all were subtype E HIV-1 on the basis of sequence analysis of a region from the envelope protein gp120. Syncytium-inducing (SI) viruses were detected for 16 of 22 patients with AIDS by using MT-2 cells. Characteristics of amino acid sequences in V3 which have not been reported previously for subtype B SI HIV-1 were associated with the subtype E HIV-1 SI phenotype. The SI viruses from our study population contain predominantly a GPGR or GPGH motif at the tip of the V3 loop, in contrast to the previously described subtype E HIV-1 from Thailand which contained predominantly GPGQ. All the SI viruses lost a potential N-linked glycosylation site in V3 which is highly conserved among previously described subtype E HIV-1 isolates from asymptomatic patients from Thailand. HIV-1 envelope sequences including V3 from some patients with AIDS were significantly more divergent than viruses from asymptomatic patients in Thailand characterized 2 years ago or earlier. These results suggest that emergence of subtype E SI HIV-1 variants is associated with the development of AIDS, as it is for subtype B HIV-1. The divergence of subtype E HIV-1 in patients with AIDS as the disease progresses, and the divergence of subtype E HIV-1 in the infected population as the epidemic continues in Thailand, may have important implications for vaccine development.  相似文献   

12.
Two distinct biological phenotypes of human immunodeficiency virus (HIV) have been described: the non-syncytium-inducing (NSI) phenotype, best characterized by the inability to infect MT-2 cells, and the syncytium-inducing (SI) phenotype, with the ability to infect MT-2 cells. The earliest virus population observed following HIV transmission is generally of the NSI phenotype, even after exposure to inocula of mixed NSI/SI phenotype. In this study, the issue of intrapatient selection of virus phenotype following transmission was addressed by studying two cases of accidental transmission. A comparison of the sequences of the V1-V2 and the V3 coding regions of the envelope gene and the p17 region of the gag gene showed that the donor-recipient pairs were tightly clustered in all gene segments, but away from local and published transmission controls. The intrasample variation of the p17 sequence was greater in the recipients and smaller in the donors than that of the V3 region sequence, indicating selection of V3 at transmission. In these transmission cases, the effects of an intravenous inoculation of a small quantity of blood containing predominantly SI V3 sequences (6 of 8 clonal sequences) were compared with those of an intramuscular inoculation of a large quantity of blood containing predominantly NSI viruses (14 of 16 clonal sequences). Both SI and NSI V3 regions were demonstrated to be phenotypic expressions of genetically related viral strains. The inoculation of the predominantly SI virus population resulted in the persistence of an SI virus population in the recipient and a rapid CD4+ T-cell decline. The inoculation of the predominantly NSI population resulted in a selective amplification of SI viruses before seroconversion, followed by a suppression of SI viruses at seroconversion and a rapid decline of CD4+ T-cell numbers. These data suggest that the suppression of SI viruses can be accomplished following the development of HIV-specific immunity and that the ability to suppress SI viruses does not prevent the development of immunodeficiency.  相似文献   

13.
Evolution of the HIV-1 V3 loop was monitored in 15 subjects over a period of 5 years at approximately 6-month intervals. Putative recombination was detected in many of the sequences. Evolutionary trees were estimated from the nonrecombinant viral sequences found in each individual. Selection and altered demographic regimes were detected with logit and other contingency analyses in a highly context-dependent fashion. Mutations leading to amino acid substitutions are subject to positive selection over a broad range of clinical conditions in the nonsyncytium-inducing (NSI) form, and the growth rates of the NSI strains and their level of genetic subdivision change little in going from a healthy immune system to a severely compromised immune system. In contrast, the SI form has a significant increase in growth rate as the immune system goes from healthy to compromised, particularly in those subjects who did not receive any antiviral drug therapy. This increase in SI growth rate results in a significant growth advantage of SI over NSI when the immune system is compromised. The SI strains also show more demographic subdivision when the immune system is healthy than when the immune system is compromised, and the SI form has greater demographic subdivision than NSI in subjects with healthy immune systems who also are not receiving antiviral drug therapy. Positive selection on amino-acid-changing mutations weakens and then intensifies again in the SI strains in going from healthy to compromised immune systems. These patterns are consistent with other studies that suggest that NSI strains inhibit replication of SI strains, that the V3 loop is more hidden from the immune system in the NSI form, that evolution in the V3 loop influences cell tropism and coreceptor usage, that substrate for replication of SI forms increases as the disease progresses, and that death of CD8 cells is influenced by the type of coreceptor usage typically found in SI but not in NSI strains. Finally, the transition between NSI and SI forms is associated with a burst of evolutionary change due to strong positive selection at sites other than those that define the NSI/SI phenotypes.  相似文献   

14.
To investigate the temporal relationship between human immunodeficiency virus type 1 (HIV-1) replicative capacity and syncytium-inducing (SI) phenotype, biological and genetic characteristics of longitudinally obtained virus clones from two HIV-1-infected individuals who developed SI variants were studied. In one individual, the emergence of rapidly replicating SI and non-syncytium-inducing (NSI) variants was accompanied by a loss of the slowly replicating NSI variants. In the other subject, NSI variants were always slowly replicating, while the coexisting SI variants showed an increase in the rate of replication. Irrespective their replicative capacity, the NSI variants remained present throughout the infection in both individuals. Phylogenetic analysis of the V3 region showed early branching of the SI variants from the NSI tree. Successful SI conversion seemed a unique event since no SI variants were found among later-stage NSI variants. This was also confirmed by the increasing evolutionary distance between the two subpopulations. At any time point during the course of the infection, the variation within the coexisting SI and NSI populations did not exceed 2%, indicating continuous competition within each viral subpopulation.  相似文献   

15.
CCR5-using human immunodeficiency virus type 1 (HIV-1) isolates typically gain CXCR4 use via multiple mutations in V3 and often V1/V2 regions of envelope, and patterns of mutations are distinct for each isolate. Here, we report that multiple CXCR4-using variants of a parental CCR5-using HIV-1 isolate, SF162, obtained by either target cell selection or CCR5 inhibition have a common mutation pattern characterized by the same two V3 mutations and that these mutations preexisted in some of the SF162 stocks. These results imply that SF162 has a single pathway for acquiring CXCR4 use and that prolonged culture is sufficient to select for R5X4 variants.  相似文献   

16.
The distribution, cell tropism, and cytopathology in vivo of human immunodeficiency virus (HIV) was investigated in postmortem tissue samples from a series of HIV-infected individuals who died either of complications associated with AIDS or for unrelated reasons while they were asymptomatic. Proviral sequences were detected at a high copy number in lymphoid tissue of both presymptomatic patients and patients with AIDS, whereas significant infection of nonlymphoid tissue such as that from brains, spinal cords, and lungs were confined to those with AIDS. V3 loop sequences from both groups showed highly restricted sequence variability and a low overall positive charge of the encoded amino acid sequence compared with those of standard laboratory isolates of HIV type 1 (HIV-1). The low charge and the restriction in sequence variability were comparable to those observed with isolates showing a non-syncytium-inducing (NSI) and macrophage-tropic phenotype in vitro. All patients were either exclusively infected (six of seven cases) or predominantly infected (one case) with variants with a predicted NSI/macrophage-tropic phenotype, irrespective of the degree of disease progression. p24 antigen was detected by immunocytochemical staining of paraffin-fixed sections in the germinal centers within lymphoid tissue, although little or no antigen was found in areas of lymph node or spleen containing T lymphocytes from either presymptomatic patients or patients with AIDS. The predominant p24 antigen-expressing cells in the lungs and brains of the patients with AIDS were macrophages and microglia (in brains), frequently forming multinucleated giant cells (syncytia) even though the V3 loop sequences of these variants resembled those of NSI isolates in vitro. These studies indicate that lack of syncytium-forming ability in established T-cell lines does not necessarily predict syncytium-forming ability in primary target cells in vivo. Furthermore, variants of HIV with V3 sequences characteristic of NSI/macrophage-tropic isolates form the predominant population in a range of lymphoid and nonlymphoid tissues in vivo, even in patients with AIDS.  相似文献   

17.
We previously demonstrated a correlation between the presence of syncytium-inducing (SI) human immunodeficiency virus type 1 (HIV-1) variants showing tropism for cell line H9 and the occurrence of rapid CD4 cell decline and progression to AIDS. In contrast, in stable asymptomatic individuals, we detected only isolates with low replication rates that were non-syncytium-inducing (NSI) and nontropic for the H9 cell line. Here, we investigated the monocytotropism of established HIV-1 isolates with a panel of isolates and with biological HIV-1 clones with distinct phenotypes. Moreover, the prevalence and biological phenotypes of monocytotropic HIV-1 variants in the course of HIV-1 infection were analyzed in comparative primary isolation studies on peripheral blood lymphocytes (PBL) and monocyte-derived macrophages (MDM). In cell-free infection studies with MDM from eight blood donors, 13 of 17 NSI isolates but only 4 of 14 SI isolates were able to infect MDM. NSI isolates also infected significantly more different donors than SI variants (median, 3 of 8 versus 0 of 8). This enhanced monocytotropism of NSI isolates was confirmed in experiments with biological HIV-1 clones with distinct phenotypes recovered from the same donor. To investigate the prevalence and biological phenotypes of monocytotropic variants in different stages of HIV-1 infection, sequential isolates from peripheral blood mononuclear cell samples from nine asymptomatic individuals, five of whom progressed to AIDS and seven of whom had a known time of seroconversion, were recovered by cocultivation with both PBL and MDM. Monocytotropic variants were obtained from 37 of 42 time points. All monocytotropic variants were NSI in PBL culture and non-T-cell-line tropic, even when SI, T-cell-line-tropic HIV-1 variants could be recovered from the same patient sample by cocultivation with PBL. We conclude that monocytotropic HIV-1 variants mostly have an NSI phenotype in PBL and, in contrast to SI variants, are present at all stages of HIV-1 infection. These results suggest an important role for monocytotropic variants in the persistence of HIV-1 infection.  相似文献   

18.
HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an “Ile-Gly” insertion in the gp120 V3 loop and replacement of the V3 “Gly-Pro-Gly” crown with a “Gly-Arg-Gly” motif, but that the accumulation of additional gp120 “scaffold” mutations was required for these V3 loop changes to confer functional effects. In this context, either of the V3 loop changes could confer possible transitional R5X4 phenotypes, but when present together they completely abolished CCR5 usage and conferred the X4 phenotype. Our results show that the emergence of CXCR4-using strains is rare in this cohort of untreated individuals with advanced C-HIV infection. In the subject where X4 variants did emerge, alterations in the gp120 V3 loop were necessary but not sufficient to confer CXCR4 usage.  相似文献   

19.
We studied the temporal relationship between human immunodeficiency type 1 (HIV-1) quasispecies in tissues and in peripheral blood mononuclear cells (PBMC) of infected individuals. Sequential PBMC and tissue samples from various organs obtained at autopsy from three patients who died of AIDS-related complications were available for analysis. Biological HIV-1 clones were isolated from PBMC samples, and cellular tropism and syncytium-inducing (SI) capacity were determined. Genomic DNA was isolated from 1 cm3 of organ tissue, and proviral DNA was amplified by means of PCR and cloned with the PGEM-T vector system. A 185-bp region encompassing the third variable domain of the virus envelope, known to influence HIV-1 biological properties, was sequenced. HIV-1 could be amplified from all PBMC and organ samples, except from liver tissue for two patients. Both SI and non-syncytium-inducing (NSI) genotypes could be detected in the different tissues. Tissue-specific quasispecies were observed in brain, lung, and testis. Lymphoid tissues, such as bone marrow, lymph node, and spleen, harbored several different variants similar to those detected in blood in the last PBMC samples. In general, only tissues in which macrophages are likely to be the main target cell for HIV-1 harbored NSI HIV-1 sequences that clustered separately. Both SI and NSI sequences that clustered with sequences from late-stage PBMC were present in other tissues, which may indicate that the presence of HIV-1 in those tissues is secondary to lymphocyte infiltration rather than to tissue tropism of HIV-1 itself. These data suggest that the viral reservoir may be limited, which will have important implications for the success of HIV-1 eradication.  相似文献   

20.
It has been suggested that immune-pressure-mediated positive selection operates to maintain the antigenic polymorphism on the third variable (V3) loop of the gp120 of human immunodeficiency virus type 1 (HIV-1). Here we present evidence, on the basis of sequencing 147 independently cloned env C2/V3 segments from a single family (father, mother, and their child), that the intensity of positive selection is related to the V3 lineage. Phylogenetic analysis and amino acid comparison of env C2/V3 and gag p17/24 regions indicated that a single HIV-1 subtype E source had infected the family. The analyses of unique env C2/V3 clones revealed that two V3 lineage groups had evolved in the parents. Group 1 was maintained with low variation in all three family members regardless of the clinical state or the length of infection, whereas group 2 was only present in symptomatic individuals and was more positively charged and diverse than group 1. Only virus isolates carrying the group 2 V3 sequences infected and induced syncytia in MT2 cells, a transformed CD4(+)-T-cell line. A statistically significant excess of nonsynonymous substitutions versus synonymous substitutions was demonstrated only for the group 2 V3 region. The data suggest that HIV-1 variants, possessing the more homogeneous group 1 V3 element and exhibiting the non-syncytium-inducing phenotype, persist in infected individuals independent of clinical status and appear to be more resistant to positive selection pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号