首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2021年2月5日Nature Chemical Biology报道,韩国首尔国立大学工程学院研究团队开发了一个合成蛋白质质量控制系统(protein quality control,ProQC),可以增强细菌的蛋白质全长翻译能力。重组蛋白质已经广泛应用于各种工业领域。蛋白质需要保持全长和适当的三维结构才能发挥功能。但是,由于细菌中的转录和翻译步骤同时发生在同一个地方,截短的基因可以作为核糖体翻译的模板,从而产生不完整的多肽。  相似文献   

2.
反式翻译(trans?translation)是细菌翻译质量控制的关键,几乎存在于所有细菌之中。反式翻译系统由转移信使mRNA(tmRNA)和小蛋白B(SmpB)组成,能够拯救因翻译不终止mRNA (non?stop mRNA)而滞留的核糖体。此外,反式翻译还能够调控特定基因的表达水平,参与细菌的应激反应。概括了细菌反式翻译系统近年来最新的研究进展,阐明反式翻译识别与拯救滞留核糖体的分子机制,归纳了反式翻译的功能及应用前景,以期为相关研究提供参考。  相似文献   

3.
SmpB-tmRNA介导的反式翻译,是细菌中普遍存在的一种主要核糖体拯救机制,对细菌的生存和增殖都具有重要影响。为了探明反式翻译系统在人-鱼共患病原菌维氏气单胞菌(Aeromonas veronii)中的作用机制,本研究基于维氏气单胞菌tmRNA的二级结构预测,将tmRNA标记肽的后5个氨基酸残基的密码子以及1个终止密码子突变为组氨酸密码子,从而构建tmRNA突变体。生长曲线测定结果表明,该tmRNA突变体能够回补tmRNA缺失导致的细菌生长缺陷;同时,免疫印迹实验确证该突变体能够成功地将反式翻译拯救的蛋白底物标记上组氨酸标签,表明其能够行使tmRNA的正常功能。本研究构建的tmRNA突变体为后续分离和纯化tmRNA-SmpB介导的反式翻译底物,进而研究反式翻译系统在细菌中的作用机制提供了理论基础。  相似文献   

4.
方慧颖  张弓 《微生物学通报》2022,49(7):2767-2777
由于抗生素的大量使用,细菌耐药问题凸显,直接威胁人类生命健康和世界经济发展。过去对于细菌耐药的遗传和分子机制研究较为透彻,而对应的调控机制研究相对较少。翻译调控作为生命体最重要的调控方式之一,在细菌耐药研究领域的重要性尚未被学术界充分重视。本文介绍了影响翻译过程的抗生素的主要作用机制,重点从核糖体的修饰和突变、tRNA总量的动态调控、tRNA氨酰化、tRNA甲基化、核糖体保护蛋白和翻译因子这几个方面概述了基于翻译调控的细菌耐药研究进展,为研究者们提供了一个基于翻译调控角度研究细菌耐药的新视角,同时也为开发靶向细菌翻译调控的新型抗生素提供一些新思路。  相似文献   

5.
羊毛硫细菌素是由细菌核糖体上合成并经翻译后加工修饰而成的一类抗菌肽。已经在多种G+细菌中发现有羊毛硫细菌素,大多对G+细菌有抑菌作用。羊毛硫细菌素的基因工程无法从单一的表达羊毛硫细菌素结构基因获得高活性的成熟羊毛硫细菌素。本研究综述了羊毛硫细菌素前体分子定向位点突变后,由修饰酶重新识别和修饰可产生结构变异的可分泌的变体分子和无法分泌的变体分子,对羊毛硫细菌素分子突变位点进行了分类和归纳,并总结了羊毛硫细菌素分子突变位点与其生物活性的关系。在现有羊毛硫细菌素应用成果有限的条件下,对于工程改造羊毛硫细菌素和增强其抑菌活性具有重要意义。  相似文献   

6.
线粒体核糖体作为细胞器中的翻译机器,与细菌核糖体以及真核细胞质核糖体在rRNA和蛋白质组分、拓扑结构、来源等方面差异显著。本文综述线粒体核糖体研究进展,对比分析其理化性质和实验结构的相似性与特殊性。基于线粒体核糖体的结构和生物学功能进一步推测:经过与tRNA的相互识别和空间取向,mRNA链构象能否影响其编码产物——新生肽链的构象,期望揭示mRNA在翻译过程中可能的作用机理。  相似文献   

7.
表观遗传和蛋白质翻译后修饰在细菌耐药中的作用   总被引:1,自引:0,他引:1  
日益严重的细菌耐药性有可能使人类重回前抗生素时代。细菌的耐药机理多样,深入研究细菌的耐药性形成机理有助于开发控制耐药细菌感染的新措施。表观遗传和蛋白质翻译后修饰在细胞代谢、信号转导、蛋白质降解、调控DNA复制、应激反应等方面都具有重要作用。近年来研究表明表观遗传和蛋白质翻译后修饰在细菌耐药中也扮演着重要的角色。本文总结了DNA甲基化、调控型RNAs等表观遗传因素和磷酸化、琥珀酰基化等蛋白质翻译后修饰因素在细菌耐药性中的调控作用,以期为抗生素靶标选择和抗生素开发设计提供新思路。  相似文献   

8.
序列分析中发现tPAK2编码区结构基因中存在一段反转重复序列,富含G、C。利用计算机预测tPAmRNA二级结构证明tPAmRNA在此处可以形成△Gm=-25.5KCal/mol的发夹结构。本研究利用定点突变技术消除了这段反转重复序列,在大肠杆菌中进行了消除前后tPA转录和翻译水平的比较。结果表明消除之后,细菌总RNA中tPA特异mRNA含量减少,细菌表达产物中tPA蛋白占破菌沉淀物的百分比却基本不变。提示大肠杆菌中基因编码区mRNA二级结构一般不构成转录的终止,但有利于mRNA的稳定性,对翻译表达无影响。  相似文献   

9.
方钰文  徐文娇  胡巧  朱奎 《微生物学通报》2021,48(11):4275-4281
关于“Bacterial translocation”的研究虽已有几十年的历史,但是国内文献对将“Bacterial Translocation”翻译为“细菌移位”还是“细菌易位”还一直存在广泛争议。为对“Bacterial Translocation”的准确翻译提供理论依据,本文阐明了其研究背景及定义、发生机制及生物学意义;系统总结了国内文献中“细菌移位”和“细菌易位”的使用现状,从中文词义和生物学过程2个角度探讨了“Bacterial Translocation”对应的中文翻译;最终认定翻译为“细菌移位”更准确、认可度更高、更有利于推进相关研究的规范化。  相似文献   

10.
细菌非编码RNA是一类新发现的基因表达调控因子,通过与靶mRNA配对,导致mRNA翻译和稳定性的变化,从而影响细胞的各种生理功能,如个体发育、翻译激活与抑制、细菌毒性等,而且一个单独的非编码RNA就能调控大量基因并对细胞生理产生深远影响。近年来诸多研究证实,非编码RNA与细菌耐药性也存在一定的关系。我们对此进行简要综述,为细菌耐药性的研究奠定基础。  相似文献   

11.

Background  

The bacterial elongation factor P (EF-P) is strictly conserved in bacteria and essential for protein synthesis. It is homologous to the eukaryotic translation initiation factor 5A (eIF5A). A highly conserved eIF5A lysine is modified into an unusual amino acid derived from spermidine, hypusine. Hypusine is absolutely required for eIF5A's role in translation in Saccharomyces cerevisiae. The homologous lysine of EF-P is also modified to a spermidine derivative in Escherichia coli. However, the biosynthesis pathway of this modification in the bacterial EF-P is yet to be elucidated.  相似文献   

12.
Bacterial elongation factor P (EF-P) is the ortholog of archaeal and eukaryotic initiation factor 5A (eIF5A). EF-P shares sequence homology and crystal structure with eIF5A, but unlike eIF5A, EF-P does not undergo hypusine modification. Recently, two bacterial genes, yjeA and yjeK, encoding truncated homologs of class II lysyl-tRNA synthetase and of lysine-2,3-aminomutase, respectively, have been implicated in the modification of EF-P to convert a specific lysine to a hypothetical β-lysyl-lysine. Here we present biochemical evidence for β-lysyl-lysine modification in Escherichia coli EF-P and for its role in EF-P activity by characterizing native and recombinant EF-P proteins for their modification status and activity in vitro. Mass spectrometric analyses confirmed the lysyl modification at lysine 34 in native and recombinant EF-P proteins. The β-lysyl-lysine isopeptide was identified in the exhaustive Pronase digests of native EF-P and recombinant EF-P isolated from E. coli coexpressing EF-P, YjeA, and YjeK but not in the digests of proteins derived from the vectors encoding EF-P alone or EF-P together with YjeA, indicating that both enzymes, YjeA and YjeK, are required for β-lysylation of EF-P. Endogenous EF-P as well as the recombinant EF-P preparation containing β-lysyl-EF-P stimulated N-formyl-methionyl-puromycin synthesis ~4-fold over the preparations containing unmodified EF-P and/or α-lysyl-EF-P. The mutant lacking the modification site lysine (K34A) was inactive. This is the first report of biochemical evidence for the β-lysylation of EF-P in vivo and the requirement for this modification for the activity of EF-P.  相似文献   

13.
Translation elongation factor P (EF-P), a ubiquitous protein over the entire range of bacterial species, rescues ribosomal stalling at consecutive prolines in proteins. In Escherichia coli and Salmonella enterica, the post-translational β-lysyl modification of Lys34 of EF-P is important for the EF-P activity. The β-lysyl EF-P modification pathway is conserved among only 26–28% of bacteria. Recently, it was found that the Shewanella oneidensis and Pseudomonas aeruginosa EF-P proteins, containing an Arg residue at position 32, are modified with rhamnose, which is a novel post-translational modification. In these bacteria, EF-P and its Arg modification are both dispensable for cell viability, similar to the E. coli and S. enterica EF-P proteins and their Lys34 modification. However, in the present study, we found that EF-P and Arg32 are essential for the viability of the human pathogen, Neisseria meningitidis. We therefore analyzed the modification of Arg32 in the N. meningitidis EF-P protein, and identified the same rhamnosyl modification as in the S. oneidensis and P. aeruginosa EF-P proteins. N. meningitidis also has the orthologue of the rhamnosyl modification enzyme (EarP) from S. oneidensis and P. aeruginosa. Therefore, EarP should be a promising target for antibacterial drug development specifically against N. meningitidis. The pair of genes encoding N. meningitidis EF-P and EarP suppressed the slow-growth phenotype of the EF-P-deficient mutant of E. coli, indicating that the activity of N. meningitidis rhamnosyl–EF-P for rescuing the stalled ribosomes at proline stretches is similar to that of E. coli β-lysyl–EF-P. The possible reasons for the unique requirement of rhamnosyl–EF-P for N. meningitidis cells are that more proline stretch-containing proteins are essential and/or the basal ribosomal activity to synthesize proline stretch-containing proteins in the absence of EF-P is lower in this bacterium than in others.  相似文献   

14.
Abstract

In addition to the small and large ribosomal subunits, aminoacyl-tRNAs, and an mRNA, cellular protein synthesis is dependent on translation factors. The eukaryotic translation initiation factor 5A (eIF5A) and its bacterial ortholog elongation factor P (EF-P) were initially characterized based on their ability to stimulate methionyl-puromycin (Met-Pmn) synthesis, a model assay for protein synthesis; however, the function of these factors in cellular protein synthesis has been difficult to resolve. Interestingly, a conserved lysine residue in eIF5A is post-translationally modified to hypusine and the corresponding lysine residue in EF-P from at least some bacteria is modified by the addition of a β-lysine moiety. In this review, we provide a summary of recent data that have identified a novel role for the translation factor eIF5A and its hypusine modification in the elongation phase of protein synthesis and more specifically in stimulating the production of proteins containing runs of consecutive proline residues.  相似文献   

15.
Elongation factor P (EF-P) is a conserved ribosome-binding protein that structurally mimics tRNA to enable the synthesis of peptides containing motifs that otherwise would induce translational stalling, including polyproline. In many bacteria, EF-P function requires post-translational modification with (R)-β-lysine by the lysyl-tRNA synthetase paralog PoxA. To investigate how recognition of EF-P by PoxA evolved from tRNA recognition by aminoacyl-tRNA synthetases, we compared the roles of EF-P/PoxA polar contacts with analogous interactions in a closely related tRNA/synthetase complex. PoxA was found to recognize EF-P solely via identity elements in the acceptor loop, the domain of the protein that interacts with the ribosome peptidyl transferase center and mimics the 3''-acceptor stem of tRNA. Although the EF-P acceptor loop residues required for PoxA recognition are highly conserved, their conservation was found to be independent of the phylogenetic distribution of PoxA. This suggests EF-P first evolved tRNA mimicry to optimize interactions with the ribosome, with PoxA-catalyzed aminoacylation evolving later as a secondary mechanism to further improve ribosome binding and translation control.  相似文献   

16.
Factor EF-P is a nonribosomal (soluble) protein of Escherichia coli that stimulates peptide bond synthesis when certain aminoacyl-tRNA analogues are used. The purification of this protein to apparent homogeneity is described here. EF-P has a molecular weight of about 21 000, a Stokes radius of 27 A (1A = 0.1 nm), and a frictional coefficient of 1.48, suggesting an asymmetric structure. By this and a number of other criteria, EF-P is a new factor that controls peptide bond formation during protein biosynthesis.  相似文献   

17.
EF-P (eubacterial elongation factor P) is a highly conserved protein essential for protein synthesis. We report that EF-P protects 16S rRNA near the G526 streptomycin and the S12 and mRNA binding sites (30S T-site). EF-P also protects domain V of the 23S rRNA proximal to the A-site (50S T-site) and more strongly the A-site of 70S ribosomes. We suggest that EF-P: (a) may play a role in translational fidelity and (b) prevents entry of fMet-tRNA into the A-site enabling it to bind to the 50S P-site. We also report that EF-P promotes a ribosome-dependent accommodation of fMet-tRNA into the 70S P-site.  相似文献   

18.
During protein synthesis, ribosomes become stalled on polyproline-containing sequences, unless they are rescued in archaea and eukaryotes by the initiation factor 5A (a/eIF-5A) and in bacteria by the homologous protein EF-P. While a structure of EF-P bound to the 70S ribosome exists, structural insight into eIF-5A on the 80S ribosome has been lacking. Here we present a cryo-electron microscopy reconstruction of eIF-5A bound to the yeast 80S ribosome at 3.9 Å resolution. The structure reveals that the unique and functionally essential post-translational hypusine modification reaches toward the peptidyltransferase center of the ribosome, where the hypusine moiety contacts A76 of the CCA-end of the P-site tRNA. These findings would support a model whereby eIF-5A stimulates peptide bond formation on polyproline-stalled ribosomes by stabilizing and orienting the CCA-end of the P-tRNA, rather than by directly contributing to the catalysis.  相似文献   

19.
A soluble protein EF-P (elongation factor P) from Escherichia coli has been purified and shown to stimulate efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Based on the partial amino acid sequence of EF-P, 18- and 24-nucleotide DNA probes were synthesized and used to screen lambda phage clones from the Kohara Gene Bank. The entire EF-P gene was detected on lambda clone #650 which contains sequences from the 94 minute region of the E.coli genome. Two DNA fragments, 3.0 and 0.78 kilobases in length encompassing the gene, were isolated and cloned into pUC18 and pUC19. Partially purified extracts from cells transformed with these plasmids overrepresented a protein which co-migrates with EF-P upon SDS polyacrylamide gel electrophoresis, and also exhibited increased EF-P mediated peptide-bond synthetic activity. Based on DNA sequence analysis of this gene, the EF-P protein consists of 187 amino acids with a calculated molecular weight of 20,447. The sequence and chromosomal location of EF-P establishes it as a unique gene product.  相似文献   

20.
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein–protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNAPhe tertiary structure, analogously to the EF-P monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号