首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
【背景】CFL1基因是白假丝酵母高铁还原酶基因,介导胞外铁离子的还原,在白假丝酵母胞内铁稳态的维持方面发挥着重要作用。【目的】研究CFL1基因调节氧化压力应答的分子机制。【方法】采用液体培养及巨噬细胞模型,测定CFL1缺失对氧化压力耐受性和杀伤巨噬细胞能力的影响;使用羟基自由基清除剂二甲基亚砜(DMSO)分析其对缓解氧化压力敏感性的影响;采用实时荧光定量PCR分析CFL1缺失对氧化压力应答基因表达的影响;采用过氧化氢酶(CAT)活性测定方法研究CFL1缺失对CAT1基因表达的影响;通过构建WT-CAT1-GFP和cfl1Δ/Δ-CAT1-GFP菌株分析过氧化氢酶基因过表达对cfl1Δ/Δ氧化压力敏感性的影响。【结果】白假丝酵母CFL1基因的缺失会造成杀伤巨噬细胞能力的减弱,氧化压力应答基因表达的下降。过氧化氢酶基因的过表达则能恢复与野生型几乎一致的氧化压力水平。【结论】CFL1基因通过转录调控参与白假丝酵母氧化压力应答过程。  相似文献   

2.
【背景】以酵母为宿主生产的蛋白往往发生过糖基化,形成高甘露糖型的N-糖基化。高甘露糖型的结构易在人体中引起免疫反应,这是酵母不能用于绝大部分糖蛋白药物生产的主要限制因素。因此,构建表达人源糖基化糖蛋白的酵母底盘细胞将为糖蛋白药物的生产提供强有力的工具。库德里阿兹威氏毕赤酵母(Pichia kudriavzevii)具有极强的抗逆性且生长迅速,是一种近年来备受关注的非典型性酵母,对其进行糖基化途径的改造将具有巨大的应用前景。【目的】对酵母N-糖基化途径的改造,首先要使其N-糖基化转变为Man5GlcNAc2核心结构,本研究对P. kudriavzevii的och1基因进行敲除并引入源自曲霉的msd S基因,以改变其分泌糖蛋白N-糖链的糖型结构。【方法】通过基因编辑对P. kudriavzevii的N-糖基化途径进行改造,获得P. kudriavzeviiΔura3Δoch1::msd S菌株,分析P. kudriavzeviiΔura3Δoch1::msd S菌株分泌糖蛋白上N-糖组的变化。【结果】与野生型P. kudriavzevii相...  相似文献   

3.
【背景】猪链球菌2型(streptococcus suis type 2, SS2)可引起人、猪的脑膜炎、关节炎及败血症等,不仅给养猪业带来巨大的经济损失,同时严重威胁公共卫生安全。本团队前期通过噬菌体展示文库技术发现Orf207编码蛋白可能参与SS2诱导的脑膜炎发生,然而其在SS2致病过程中的具体作用尚不清楚。【目的】探究Orf207基因对SS2致病性的影响。【方法】采用温敏性自杀质粒介导的同源重组系统,构建SC19 Orf207基因缺失菌株ΔOrf207及其回补菌株CΔOrf207,系统比较缺失菌株与野生株间在生长特性、形态、组织定殖能力、毒力情况、细胞黏附与侵袭及抗巨噬细胞吞噬能力等生物学特性方面的差异。【结果】与野生株相比,缺失菌株链长变短,生长速度略慢;而且Orf207缺失显著增加了小鼠的存活率,降低了细菌在血液、心脏、肝脏、脾脏、肺脏、肾脏、脑组织的定殖能力和对肺组织的病理损伤并显著减弱SS2对HeLa细胞的黏附与侵袭能力及抗巨噬细胞吞噬能力。【结论】Orf207基因可以显著降低SS2对宿主的致病能力,本研究结果不仅丰富了SS2的致病机制,也为SS2疫苗等研发提供了新靶点。  相似文献   

4.
摘要:【目的】获得产甘油假丝酵母(Candida glycerinogenes)耐高渗和过量合成甘油的关键调控基因—丝裂原活化蛋白激酶基因(CgHOG1),并考察其渗透压调节功能。【方法】运用简并PCR 结合Self-Formed Adaptor PCR技术从产甘油假丝酵母基因组中克隆CgHOG1基因并进行生物信息学相关分析,将CgHOG1基因在酿酒酵母(Saccharomyces cerevisiae W303-1A)hog1Δ缺失突变株中互补表达,考察菌株耐渗透压能力变化。【结果】所获得CgHOG1基因全长1164 bp,编码387个氨基酸序列(GenBank No. KC480066);氨基酸序列与来源于Ogataea parapolymorpha的Hog1p同源性最高,为86%;该基因在酿酒酵母hog1Δ缺失突变株中异源表达能够显著提高菌株的抗盐耐高渗和甘油合成能力。【结论】本文所获得的基因CgHOG1是一个具有耐高渗和过量合成甘油调控功能的新基因,研究结果为产甘油假丝酵母超高渗应答机制的研究及抗盐耐旱作物改造提供了新的基因。  相似文献   

5.
摘要:【目的】验证大丽轮枝菌分泌途径中一个膜泡运输蛋白VdSec22的功能,为防治棉花黄萎病提供潜在的生物靶点。【方法】利用“正负双向筛选法”的方法,构建大丽轮枝菌VdSec22蛋白编码基因缺失的突变体菌株ΔQF。通过农杆菌介导的转化,将其编码基因VdSec22重新导入ΔQF构建了功能回补菌株CΔQF。以野生型菌株为对照,检测上述菌株分泌胞外蛋白(果胶酶、纤维素酶和毒素蛋白)的能力;采用蘸根接种的方法,检测上述菌株对棉花致病性的差异。同时通过定量PCR检测内质网分子伴侣表达量的方法,推断突变体菌株ΔQF中是否发生了内质网应激反应。【结果】成功构建了基因敲除突变体ΔQF和功能回补菌株CΔQF。突变体菌株ΔQF的果胶酶、纤维素酶、毒素蛋白的分泌能力和对棉花的致病性均较野生型减弱,并且产生了内质网应激反应。重新导入VdSec22基因可弥补突变体菌株ΔQF的上述缺陷。【结论】VdSec22是大丽轮枝菌的一个重要分泌途径蛋白,在大丽轮枝菌诸多胞外致病蛋白的分泌和棉花致病性中起重要作用。VdSec22可作为防治棉花黄萎病的潜在生物靶点。  相似文献   

6.
白假丝酵母是免疫功能低下宿主条件致病感染中最常见的病原真菌之一,目前基本已肯定分泌型天冬氨酸蛋白酶(s印)在其致病过程中具有重要作用。现将近年来有关白假丝酵母Sap的研究从其编码基因、分子特性和表达以及在白假丝酵母致病中的作用等作一综述。  相似文献   

7.
【目的】热带假丝酵母是发酵法生产二元酸的重要工业菌株,具有较高的ω-氧化活性。脂肪醛脱氢酶在ω-氧化途径中起重要作用,催化脂肪醛生成脂肪酸,但其具体催化功能及对细胞生理影响还未被系统研究。本文通过删除脂肪醛脱氢酶基因CtAld1和CtAld2鉴定了其在ω-氧化途径中的功能。【方法】通过基因组信息挖掘获得热带假丝酵母脂肪醛脱氢酶基因CtAld1和CtAld2序列,在此基础上,通过同源重组敲除CtAld1和CtAld2基因。考察突变株的生长和胞内脂肪醛脱氢酶活性变化,并评价CtAld1和CtAld2基因敲除对细胞二元酸合成能力的影响。【结果】分别获得了热带假丝酵母突变株XZX-1(ΔCtAld1/ΔCtAld1)、XZX-2(ΔCtAld2/ΔCtAld2)和XZX-12(ΔCtAld1/ΔCtAld1,ΔCtAld2/ΔCtAld2)。在以十二烷为唯一碳源的培养基中,敲除CtAld2基因显著抑制细胞的生长,胞内脂肪醛脱氢酶活性降低为出发菌株的30%;敲除CtAld1基因尽管会使细胞损失一部分醛脱氢酶活性,但能够一定程度地提升细胞在十二烷中的生长性能。敲除CtAld1或CtAld2会降低菌株二元酸产量,组合敲除CtAld1和CtAld2严重削弱菌株十二碳二元酸的合成能力。【结论】CtAld2对热带假丝酵母细胞的生长和十二碳二元酸的合成具有重要作用,缺失CtAld1或CtAld2基因降低细胞的二元酸合成能力。CtAld1和CtAld2可作为热带假丝酵母ω-氧化途径代谢工程改造的潜在靶点。  相似文献   

8.
白假丝酵母可在酵母相和菌丝相之间进行转换,这种形态转换对白假丝酵母的黏附、侵入和逃逸宿主免疫系统攻击的能力等都具有很大的影响。近年来,运用分子生物学方法克隆出了一系列与白假丝酵母形态转换相关的基因,并发现了两条调控其形态转换的信号传导途径。  相似文献   

9.
【目的】酵母表达外源糖蛋白时会对蛋白进行过度N-糖基化修饰,产生高甘露糖型糖链,影响蛋白的活性,其中α-1,6-甘露糖转移酶(och1p)在这一过程中起着关键作用。通过敲除毕赤酵母X-33的α-1,6甘露糖转移酶(och1p)基因,获得一个对糖蛋白进行低糖基化修饰的毕赤酵母表达系统。【方法】采用双交换同源重组敲除目的基因的方法,首先敲除毕赤酵母X-33的URA3基因,获得一个尿嘧啶营养缺陷型的X-33(ura3-)菌株;然后用URA3基因作为选择标记,敲除X-33(ura3-)的α-1,6甘露糖转移酶(och1p)基因,获得OCH1基因敲除的X-33(och1-)菌株。用X-33(och1-)菌表达糖蛋白GM-CSF,分析GM-CSF蛋白糖链的变化。【结果】首次成功敲除了X-33的URA3和OCH1基因,与野生型相比,X-33(och1-)菌表达的GM-CSF蛋白过度糖基化修饰程度明显降低。【结论】X-33(och1-)菌株的构建提供了一个对蛋白低N-糖基化修饰的毕赤酵母表达系统,也为进一步的糖基化改造提供了良好的基础。  相似文献   

10.
摘要: 【目的】酵母表达外源糖蛋白时会对蛋白进行过度N-糖基化修饰,产生高甘露糖型糖链,影响蛋白的活性,其中α-1,6-甘露糖转移酶(och1p)在这一过程中起着关键作用。通过敲除毕赤酵母X-33的α-1,6甘露糖转移酶(och1p)基因,获得一个对糖蛋白进行低糖基化修饰的毕赤酵母表达系统。【方法】采用双交换同源重组敲除目的基因的方法,首先敲除赤酵母X-33的URA3基因,获得一个尿嘧啶营养缺陷型的X-33(ura3-)菌株;然后用URA3基因作为选择标记,敲除X-33(ura3-)的α-1,6甘露糖转移酶(och1p)基因,获得OCH1基因敲除的X-33(och1-)菌株。用X-33 (och1-)菌表达糖蛋白GM-CSF,分析GM-CSF蛋白糖链的变化。【结果】首次成功敲除了X-33的URA3和OCH1基因,与野生型相比,X-33(och1-)菌表达的GM-CSF蛋白过度糖基化修饰程度明显降低。【结论】X-33(och1-)菌株的构建提供了一个对蛋白低N-糖基化修饰的毕赤酵母表达系统,也为进一步的糖基化改造提供了良好的基础。  相似文献   

11.
The Candida albicans vacuole has previously been observed to undergo rapid expansion during the emergence of a germ tube from a yeast cell, to occupy the majority of the parent yeast cell. Furthermore, the yeast-to-hypha switch has been implicated in the virulence of this organism. The class C vps (vacuolar protein sorting) mutants of Saccharomyces cerevisiae are defective in multiple protein delivery pathways to the vacuole and prevacuole compartment. In this study C. albicans homologues of the S. cerevisiae class C VPS genes have been identified. Deletion of a C. albicans VPS11 homologue resulted in a number of phenotypes that closely resemble those of the class C vps mutants of S. cerevisiae, including the absence of a vacuolar compartment. The C. albicans vps11Delta mutant also had much-reduced secreted lipase and aspartyl protease activities. Furthermore, vps11Delta strains were defective in yeast-hypha morphogenesis. Upon serum induction of filamentous growth, mutants showed delayed emergence of germ tubes, had a reduced apical extension rate compared to those of control strains, and were unable to form mature hyphae. These results suggest that Vps11p-mediated trafficking steps are necessary to support the rapid emergence and extension of the germ tube from the parent yeast cell.  相似文献   

12.
Newly synthesized membrane and secreted proteins undergo a series of posttranslational modifications in the Golgi apparatus, including attachment of carbohydrate moieties. The final structure of so-formed glycans is determined by the order of execution of the different glycosylation steps, which seems intimately related to the spatial distribution of glycosyltransferases and glycosyl hydrolases within the Golgi apparatus. How cells achieve an accurate localization of these enzymes is not completely understood but might involve dynamic processes such as coatomer-coated (COPI) vesicle-mediated trafficking. In yeast, this transport is likely to be regulated by vacuolar protein sorting 74 (Vps74p), a peripheral Golgi protein able to interact with COPI coat as well as with a binding motif present in the cytosolic tails of some mannosyltransferases. Recently, Golgi phosphoprotein 3 (GOLPH3), the mammalian homolog of Vps74, has been shown to control the Golgi localization of core 2 N-acetylglucosamine-transferase 1. Here, we highlight a role of GOLPH3 in the spatial localization of α-2,6-sialyltransferase 1. We show, for the first time, that GOLPH3 supports incorporation of both core 2 N-acetylglucosamine-transferase 1 and α-2,6-sialyltransferase 1 into COPI vesicles. Depletion of GOLPH3 altered the subcellular localization of these enzymes. In contrast, galactosyltransferase, an enzyme that does not interact with GOLPH3, was neither incorporated into COPI vesicles nor was dependent on GOLPH3 for proper localization.  相似文献   

13.
In the Golgi apparatus, lipid homeostasis pathways are coordinated with the biogenesis of cargo transport vesicles by phosphatidylinositol 4-kinases (PI4Ks) that produce phosphatidylinositol 4-phosphate (PtdIns4P), a signaling molecule that is recognized by downstream effector proteins. Quantitative analysis of the intra-Golgi distribution of a PtdIns4P reporter protein confirms that PtdIns4P is enriched on the trans-Golgi cisterna, but surprisingly, Vps74 (the orthologue of human GOLPH3), a PI4K effector required to maintain residence of a subset of Golgi proteins, is distributed with the opposite polarity, being most abundant on cis and medial cisternae. Vps74 binds directly to the catalytic domain of Sac1 (K(D) = 3.8 μM), the major PtdIns4P phosphatase in the cell, and PtdIns4P is elevated on medial Golgi cisternae in cells lacking Vps74 or Sac1, suggesting that Vps74 is a sensor of PtdIns4P level on medial Golgi cisternae that directs Sac1-mediated dephosphosphorylation of this pool of PtdIns4P. Consistent with the established role of Sac1 in the regulation of sphingolipid biosynthesis, complex sphingolipid homeostasis is perturbed in vps74Δ cells. Mutant cells lacking complex sphingolipid biosynthetic enzymes fail to properly maintain residence of a medial Golgi enzyme, and cells lacking Vps74 depend critically on complex sphingolipid biosynthesis for growth. The results establish additive roles of Vps74-mediated and sphingolipid-dependent sorting of Golgi residents.  相似文献   

14.
Targeting and retention of resident integral membrane proteins of the Golgi apparatus underly the function of the Golgi in glycoprotein and glycolipid processing and sorting. In yeast, steady-state Golgi localization of multiple mannosyltransferases requires recognition of their cytosolic domains by the peripheral Golgi membrane protein Vps74, an orthologue of human GOLPH3/GPP34/GMx33/MIDAS (mitochondrial DNA absence sensitive factor). We show that targeting of Vps74 and GOLPH3 to the Golgi apparatus requires ongoing synthesis of phosphatidylinositol (PtdIns) 4-phosphate (PtdIns4P) by the Pik1 PtdIns 4-kinase and that modulation of the levels and cellular location of PtdIns4P leads to mislocalization of these proteins. Vps74 and GOLPH3 bind specifically to PtdIns4P, and a sulfate ion in a crystal structure of GOLPH3 indicates a possible phosphoinositide-binding site that is conserved in Vps74. Alterations in this site abolish phosphoinositide binding in vitro and Vps74 function in vivo. These results implicate Pik1 signaling in retention of Golgi-resident proteins via Vps74 and show that GOLPH3 family proteins are effectors of Golgi PtdIns 4-kinases.  相似文献   

15.
To investigate the role of the prevacuolar secretion pathway in the trafficking of vacuolar proteins in Candida albicans, the C. albicans homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene VPS4 was cloned and analyzed. Candida albicans VPS4 encodes a deduced AAA-type ATPase that is 75.6% similar to S. cerevisiae Vps4p, and plasmids bearing C. albicans VPS4 complemented the abnormal vacuolar morphology and carboxypeptidase missorting in S. cerevisiae vps4 null mutants. Candida albicans vps4Delta null mutants displayed a characteristic class E vacuolar morphology and multilamellar structures consistent with an aberrant prevacuolar compartment. The C. albicans vps4Delta mutant degraded more extracellular bovine serum albumin than did wild-type strains, which implied that this mutant secreted more extracellular protease activity. These phenotypes were complemented when a wild-type copy of VPS4 was reintroduced into its proper locus. Using a series of protease inhibitors, the origin of this extracellular protease activity was identified as a serine protease, and genetic analyses using a C. albicans vps4Deltaprc1Delta mutant identified this missorted vacuolar protease as carboxypeptidase Y. Unexpectedly, C. albicans Sap2p was not detected in culture supernatants of the vps4Delta mutants. These results indicate that C. albicans VPS4 is required for vacuolar biogenesis and proper sorting of vacuolar proteins.  相似文献   

16.
Vps74p, a member of the GOLPH3 protein family, binds directly to coatomer and the cytoplasmic tails of a subset of Golgi‐resident glycosyltransferases to mediate their Golgi retention. We identify a cluster of arginine residues at the N‐terminal end of GOLPH3 proteins that are necessary and sufficient to mediate coatomer binding. While loss of coatomer binding renders Vps74p non‐functional for glycosyltransferase retention, the Golgi membrane‐binding capabilities of the mutant protein are not significantly reduced. We establish that the oligomerization status and phosphatidylinositol‐4‐phosphate‐binding properties of Vps74p largely account for the membrane‐binding capacity of the protein and identify an Arf1p–Vps74p interaction as a potential contributing factor in Vps74p Golgi membrane association .  相似文献   

17.
The phosphatidylinositol (PI) 3-kinase Vps34p of Candida albicans influences vesicular intracellular transport, filamentous growth and virulence. To get a clearer understanding how these phenomena are connected, we analysed hyphal growth in a matrix under microaerophilic conditions at low temperature, the detoxification of metal ions and antifungal drugs, the secretion of aspartic proteinases (Saps), as well as expression of adhesion-associated proteins of the C. albicans vps34 null mutant strain. The hyphal growth in a matrix, which is repressed in the wild-type strain by Efg1p, was derepressed in the mutant. CZF1, which encodes an activator of hyphal growth in a matrix, was up-regulated in the mutant. In addition, CZF1 expression was pH-dependent in the wild-type. Expression of EFG1 was not changed. Examination of Saps secretion showed a reduction in the vps34 null mutant. Determination of sensitivity against metal ions and antimycotic drugs revealed defects in detoxification. Expression studies indicated that the vps34 mutant reacts to the phenotypical defects with an up-regulation of genes involved in these processes, including the aspartyl proteinases SAP2 and SAP9, adhesion proteins ALS1 and HWP1, and the ABC transporters CDR1 and HST6. We also found an increased expression of the PI 4-kinase LSB6 indicating a complex feed-back mechanism for the compensation of the multiple defects arising from the lack of the PI3-kinase VPS34.  相似文献   

18.
Candida albicans secretes aspartyl proteases (Saps) during infection. Although Saps are secretory proteins, little is known about the intracellular trafficking and secretion of these proteins. We previously cloned and analyzed the C. albicans pre-vacuolar protein sorting gene VPS4, and demonstrated that extracellular Sap2p is absent in the culture supernatants of the vps4delta null mutant. We therefore investigated the role of the C. albicans pre-vacuolar secretion pathway in the trafficking of Sap4-6p and in vivo virulence. The C. albicans vps4delta mutant failed to produce extracellular Sap4-6p. Next, when tested in a mouse model of disseminated candidiasis, the vps4delta mutant was greatly attenuated in virulence. Histopathological analysis indicated that infection with the vps4delta mutant did not cause renal microabscess formation, in contrast to the wild-type strain. Our results imply that VPS4 is required for extracellular secretion of Sap4-6p, and that C. albicans requires an intact pre-vacuolar secretory pathway for wild-type virulence in vivo.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, mutations in vacuolar protein sorting (VPS) genes result in secretion of proteins normally localized to the vacuole. Characterization of the VPS pathway has provided considerable insight into mechanisms of protein sorting and vesicle-mediated intracellular transport. We have cloned VPS9 by complementation of the vacuolar protein sorting defect of vps9 cells, characterized its gene product, and investigated its role in vacuolar protein sorting. Cells with a vps9 disruption exhibit severe vacuolar protein sorting defects and a temperature-sensitive growth defect at 38 degrees C. Electron microscopic examination of delta vps9 cells revealed the appearance of novel reticular membrane structures as well as an accumulation of 40- to 50-nm-diameter vesicles, suggesting that Vps9p may be required for the consumption of transport vesicles containing vacuolar protein precursors. A temperature-conditional allele of vps9 was constructed and used to investigate the function of Vps9p. Immediately upon shifting of temperature-conditional vps9 cells to the nonpermissive temperature, newly synthesized carboxypeptidase Y was secreted, indicating that Vps9p function is directly required in the VPS pathway. Antibodies raised against Vps9p immunoprecipitate a rare 52-kDa protein that fractionates with cytosolic proteins following cell lysis and centrifugation. Analysis of the VPS9 DNA sequence predicts that Vps9p is related to human proteins that bind Ras and negatively regulate Ras-mediated signaling. We term the related regions of Vps9p and these Ras-binding proteins a GTPase binding homology domain and suggest that it defines a family of proteins that bind monomeric GTPases. Vps9p may bind and serve as an effector of a rab GTPase, like Vps2lp, required for vacuolar protein sorting.  相似文献   

20.
The functions of two Schizosaccharomyces pombe Vps9-like genes, SPBC4F6.10/vps901(+) and SPBC29A10.11c/vps902(+), were characterized. Genomic sequence analysis predicted that Vps901p contains a VPS9 domain, whereas cDNA analyses revealed that Vps901p contains a CUE domain (coupling of ubiquitin to ER degradation) in its C-terminal region. Deletion of vps901(+) resulted in mis-sorting and secretion of S. pombe vacuolar carboxypeptidase Cpy1p, whereas deletion of vps902(+) had no effect, suggesting that only Vps901p functions in vacuolar protein transport in S. pombe. Deletion of vps901(+) further produced pleiotropic phenotypes, including vacuolar homotypic fusion and endocytosis defects. Heterologous expression of the budding yeast VPS9 gene corrected the CPY mis-sorting defect in vps901Δ cells. These findings suggest that the VPS9 domain of Vps901p is required for vacuolar protein trafficking in S. pombe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号