首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.  相似文献   

3.
BACKGROUND: Cyclin E, in conjunction with its catalytic partner cdk2, is rate limiting for entry into the S phase of the cell cycle. Cancer cells frequently contain mutations within the cyclin D-Retinoblastoma protein pathway that lead to inappropriate cyclin E-cdk2 activation. Although deregulated cyclin E-cdk2 activity is believed to directly contribute to the neoplastic progression of these cancers, the mechanism of cyclin E-induced neoplasia is unknown. RESULTS: We studied the consequences of deregulated cyclin E expression in primary cells and found that cyclin E initiated a p53-dependent response that prevented excess cdk2 activity by inducing expression of the p21Cip1 cdk inhibitor. The increased p53 activity was not associated with increased expression of the p14ARF tumor suppressor. Instead, cyclin E led to increased p53 serine15 phosphorylation that was sensitive to inhibitors of the ATM/ATR family. When either p53 or p21cip1 was rendered nonfunctional, then the excess cyclin E became catalytically active and caused defects in S phase progression, increased ploidy, and genetic instability. CONCLUSIONS: We conclude that p53 and p21 form an inducible barrier that protects cells against the deleterious consequences of cyclin E-cdk2 deregulation. A response that restrains cyclin E deregulation is likely to be a general protective mechanism against neoplastic transformation. Loss of this response may thus be required before deregulated cyclin E can become fully oncogenic in cancer cells. Furthermore, the combination of excess cyclin E and p53 loss may be particularly genotoxic, because cells cannot appropriately respond to the cell cycle anomalies caused by excess cyclin E-cdk2 activity.  相似文献   

4.
With increasing frequency during serial passage in culture, primary human keratinocytes express p16(INK4A) (p16) and undergo senescence arrest. Keratinocytes engineered to express hTERT maintain long telomeres but typically are not immortalized unless, by mutation or other heritable event, they avoid or greatly reduce p16 expression. We have confirmed that keratinocytes undergo p16-related senescence during growth in culture, whether in the fibroblast feeder cell system or in the specialized K-sfm medium formulation, and that this mechanism can act as a barrier to immortalization following hTERT expression. We have characterized the p16-related arrest mechanism more precisely by interfering specifically with several regulators of cell cycle control. Epidermal, oral mucosal, corneal limbal, and conjunctival keratinocytes were transduced to express a p16-insensitive mutant cdk4 (cdk4(R24C)), to abolish p16 control, and/or a dominant negative mutant p53 (p53DD), to abolish p53 function. Expression of either cdk4(R24C) or p53DD alone had little effect on life span, but expression of both permitted cells to divide 25 to 43 population doublings (PD) beyond their normal limit. Keratinocytes from a p16(+/-) individual transduced to express p53DD alone displayed a 31-PD life span extension associated with selective growth of variants that had lost the wild-type p16 allele. Cells in which both p53 and p16 were nonfunctional divided rapidly during their extended life span but experienced telomere erosion and ultimately ceased growth with very short telomeres. Expression of hTERT in these cells immortalized them. Keratinocytes engineered to express cdk4(R24C) and hTERT but not p53DD did not exhibit an extended life span. Rare immortal variants exhibiting p53 pathway defects arose from them, however, indicating that the p53-dependent component of keratinocyte senescence is telomere independent. Mutational loss of p16 and p53 has been found to be a frequent early event in the development of squamous cell carcinoma. Our results suggest that such mutations endow keratinocytes with extended replicative potential which may serve to increase the probability of neoplastic progression.  相似文献   

5.
Replicative senescence is known to be an intrinsic mechanism in determining the finite life span of in vitro cultured cells. Since this process is recognized as an evolutionarily conserved mechanism from yeast to mammalian cells, we compared the senescence-associated genetic alterations in the p53, p16(INK4a), and telomere regulatory pathways using replicative senescent human, mouse, and chicken fibroblast cells. Normal human diploid fibroblast (HDF; WI38) and chicken embryonic fibroblast (CEF) cells were shown to have a more extended in vitro proliferative potential than their mouse embryonic fibroblast (MEF) counterpart. In contrast to the HDF and CEF cells, MEF cells were shown to express telomerase mRNA and maintain telomerase activity throughout their in vitro life span. Functional p53 activity was shown to increase in the replicative senescent HDF and CEF cells, but not in replicative senescent MEF cells. On the other hand, there was a gradual elevation of p16(INK4a) expression with increased cell passages which reached a maximum in replicative senescent MEF cells. Taken together, the present study demonstrates that the p53, p16(INK4a), and telomere regulatory functions may be differentially regulated during replicative senescence in human, mouse, and chicken fibroblast cells.  相似文献   

6.
7.
Summary The study of in vitro cell transformation is valuable for understanding the multistep carcinogenesis of human cells. The difficulty in inducing neoplastic transformation of human cells by treatment with chemical or physical agents alone is due to the difficulty in immortalizing normal human cells. Thus, the immortalization step is critical for in vitro neoplastic transformation of human cells. We transfected a mutant p53 gene (mp53: codon 273Arg-His) into normal human fibroblasts and obtained two G418-resistant mp53-containing clones. These clones showed an extended life span but ultimately senesced. However, when they were treated with either 4-nitroquinoline 1-oxide or X rays, they were immortalized. The immortalized cells showed both numerical and structural chromosome abnormalities, but they were not tumorigenic. The expression of mutant but not wild type p53 was detected in the immortalized cells by RT-PCR. Expression of p21, which is located downstream of p53, was remarkably reduced in the immortalized cells, resulting in increased cdk2 and cdc2 kinase activity. However, there was no significant difference between the normal and immortalized human cells in expression of another tumor suppressor gene, p16. These findings indicate that the p53-p21 cascade may play an important role in the immortalization of human cells.  相似文献   

8.
The expression of cyclins, cyclin-dependent kinases (cdk), and cdk inhibitors was evaluated in clones from a human ovarian cancer cell line transfected with a temperature-sensitive mutant of p53, after treatment with the anticancer agents doxorubicin (DX) and AMSA. The two drugs were selected on the basis of their activity in these clones, since AMSA is equally active in cells expressing mutated or wild-type (wt) p53, while DX was much less cytotoxic in cells expressing wt p53. In untreated cells, the expression of wt p53 induced an accumulation of cells in the G2 and perhaps also the G1 phase of the cell cycle. Concomitantly cyclin B1 and cdc2 increased. Cyclin E and particularly D1 levels were also raised by wt p53 expression. Treatment of mutated p53-expressing cells (SK23a cells kept at 37°C) with DX or, more so, with AMSA, resulted in a strong accumulation of cyclin B1 and cdc2, in accordance with their ability to block cells in G2 phase of the cell cycle. Wt p53-expressing cells (SK23a cells kept at 32°C) treated with the drugs showed an increase in p21 expression and consequently decreased kinase activity after immunoprecipitation with p21 antibodies. Cdc2-associated kinase activity was also reduced in these conditions. We could also observe a decrease in the percentage of cells in G1 and G2 phases and an accumulation of cells in S phase after both DX and AMSA. Cdk2, retinoblastoma, and p27 levels did not change significantly. Treatment with DX or AMSA caused similar effects, suggesting that p53-induced changes in cyclin, cdk, and cdk inhibitors after DNA damage are not responsible for the marked reduction in the cytotoxicity of DX we observed in wt p53-expressing cells.  相似文献   

9.
10.
Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function.  相似文献   

11.
12.
Analysis of wild-type and mutant p21WAF-1 gene activities.   总被引:14,自引:6,他引:8       下载免费PDF全文
The p21WAF-1 gene is positively regulated by the wild-type p53 protein. p21WAF-1 has been shown to interact with several cyclin-dependent kinase complexes and block the activity of G1 cyclin-dependent kinases (cdks). Mutational analysis with the p21WAF-1 gene localized a site, at amino acid residues 21 and 24 in the amino terminus of the protein, for p21WAF-1 binding to cyclins D and E. This region of the protein is conserved (residues 21 to 26) in other p21WAF-1 family members, p27kip-1 and p57kip-2. The same p21WAF-121,24 mutant also fails to bind to cyclin D1-cdk 4 or cyclin E-cdk 2 complexes in vitro, suggesting that amino acid residues 21 and 24 are important for p21WAF-1-cdk-cyclin trimeric complex interactions. The p21WAF-1 wild-type protein will suppress tumor cell growth in culture while p21WAF-1 mutant proteins with defects in residues 21 and 24 fail to suppress tumor cell growth. The overexpression of cyclin D or E in these cells will partially overcome the growth suppression of wild-type p21WAF-1 protein in cells. These results provide evidence that p21WAF-1 acts through cyclin D1-cdk4 and cyclin E-cdk2 complexes in vivo to induce the growth suppression. The p21WAF-1 binding sites for cyclins (residues 21 to 26), cdk2 (residues 49 to 71), and proliferating-cell nuclear antigen (residues 124 to 164) have all been mapped to discrete sites on the protein.  相似文献   

13.
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspension of cycling cells, amounts of cyclin A (a cdk2 partner), cyclin A mRNA, and cyclin A-associated activity decreased much more rapidly in the presence than in the absence of p21(Cip1). Neither suspension nor p21(Cip1) status affected the stability of cyclin A mRNA. Loss of p21(Cip1) reduced the capacity of suspended cells to growth arrest, differentiate, and accumulate p27(Kip1) (a second cdk2 inhibitor) and affected the composition of E2F DNA binding complexes. Cyclin A-cdk2 complexes in suspended p21(+/+) cells contained p21(Cip1) or p27(Kip1), whereas most of the cyclin A-cdk2 complexes in p21(-/-) cells lacked p27(Kip1). Ectopic expression of p21(Cip1) allowed p21(-/-) keratinocytes to efficiently down-regulate cyclin A and differentiate when placed in suspension. These findings show that p21(Cip1) mediates the effects of suspension on numerous processes in primary keratinocytes including cdk2 activity, cyclin A expression, cell cycle progression, and differentiation.  相似文献   

14.
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.  相似文献   

15.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

16.
Cdc25A, a phosphatase essential for G1-S transition, associates with, dephosphorylates, and activates the cell cycle kinase cyclin E-cdk2. p21CIP1 and p27 are cyclin-dependent kinase (cdk) inhibitors induced by growth-suppressive signals such as p53 and transforming growth factor beta (TGF-beta). We have identified a cyclin binding motif near the N terminus of Cdc25A that is similar to the cyclin binding Cy (or RR LFG) motif of the p21CIP1 family of cdk inhibitors and separate from the catalytic domain. Mutations in this motif disrupt the association of Cdc25A with cyclin E- or cyclin A-cdk2 in vitro and in vivo and selectively interfere with the dephosphorylation of cyclin E-cdk2. A peptide based on the Cy motif of p21 competitively disrupts the association of Cdc25A with cyclin-cdks and inhibits the dephosphorylation of the kinase. p21 inhibits Cdc25A-cyclin-cdk2 association and the dephosphorylation of cdk2. Conversely, Cdc25A, which is itself an oncogene up-regulated by the Myc oncogene, associates with cyclin-cdk and protects it from inhibition by p21. Cdc25A also protects DNA replication in Xenopus egg extracts from inhibition by p21. These results describe a mechanism by which the Myc- or Cdc25A-induced oncogenic and p53- or TGF-beta-induced growth-suppressive pathways counterbalance each other by competing for cyclin-cdks.  相似文献   

17.
The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity.  相似文献   

18.
Rb and E2F-1 regulate telomerase activity in human cancer cells   总被引:10,自引:0,他引:10  
  相似文献   

19.
We show here that histone deacetylase inhibitors (HDACIs) sodium dibutyrate (SDB) and trichostatin A (TSA) induce a phenotype that has similarities to replicative senescence in human fibroblasts. There was no evidence that SDB accelerated a constitutive cell division counting mechanism as previously suggested because cells pretreated with SDB for three mean population doublings (MPDs) exhibited a similar overall proliferative life span to controls once SDB was withdrawn. SDB-treated cells upregulated the cell cycle inhibitors p21(WAF1) and p16(INK4A), but not p14(ARF), in the same sequential order as in senescence and the cells developed biochemical markers of senescence. However, the mechanism of senescence did not involve telomere dysfunction and there was no evidence for any posttranslational modification of p53. The expression of human papillomavirus (HPV) 16 E6 in human fibroblasts or targeted disruption of the p53 and p21(WAF) genes only weakly antagonized HDACI-induced senescence. However, expression of the E7 gene, which inhibits the function of pRb, cooperated with E6 to block SDB-induced senescence completely and human cells deficient in p16(INK4A) (but not p14(ARF)) were also resistant to SDB-induced senescence, suggesting that the p16(INK4A)/pRb pathway is the major mediator of HDACI-induced senescence in human cells. However, p53-/- mouse fibroblasts were resistant to HDACI-induced senescence, identifying p53 as the major pathway to senescence in this species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号